

Ejercicios de Fundamentos Matemáticos I

Ingeniería de Telecomunicaciones

Rafael Payá Albert

Departamento de Análisis Matemático
Universidad de Granada

Relación de Ejercicios Nº 1

(Fecha límite de entrega: 13 de octubre)

- 1. Probar la desigualdad de Cauchy-Schwartz y discutir la posible igualdad.
- 2. Probar la desigualdad triangular y discutir la posible igualdad.
- **3.** (Teorema de Pitágoras). Comprobar que dos vectores $x, y \in \mathbb{R}^n$ son ortogonales si, y sólo si, $||x+y||^2 = ||x||^2 + ||y||^2$.
- 4. Comprobar la identidad de Lagrange:

$$||x||^2 ||y||^2 = \langle x|y\rangle^2 + ||x \times y||^2 \quad (x, y \in \mathbb{R}^3)$$

y deducir el valor de $||x \times y||$.

- **5.** Calcular el área del paralelogramo en \mathbb{R}^3 de vértices (0,0,0),(5,0,0),(2,6,6) y (7,6,6).
- **6.** Calcular el área del paralelogramo en \mathbb{R}^2 de vértices (0,1),(3,0),(5,-2) y (2,-1).
- 7. Calcular el área del triángulo en \mathbb{R}^3 de vértices (-1,1,2),(1,-1,3) y (2,3,-1).
- **8.** Calcular el volumen del paralelepípedo con aristas concurrentes AB, AC y AD, siendo A = (1, 1, 1), B = (2, 0, 3), C = (4, 1, 7) y D = (3, -1, -2).
- 9. Calcular la distancia del punto (1,1) a la recta que pasa por (-1,1) y (1,-1).
- 10. Hallar las ecuaciones paramétricas del plano en \mathbb{R}^3 que pasa por el punto (3,-1,2) y contiene a la recta de ecuación (x,y,z)=(2,-1,0)+t(2,3,0). Calcular también la distancia del origen de coordenadas a dicho plano.
- 11. Hallar las ecuaciones paramétricas del plano en \mathbb{R}^3 que pasa por los puntos (3,2,-1) y (1,-1,2), siendo paralelo a la recta de ecuación (x,y,z)=(1,-1,0)+t(3,2,-2). Calcular también la distancia del origen de coordenadas a dicho plano.
- **12.** Calcular la distancia en \mathbb{R}^3 del punto (1,1,1) al plano que pasa por (1,1,0), (1,0,1) y (0,1,1).

Relación de Ejercicios Nº 2

Fecha límite de entrega: 28 de octubre

1. Si f y g son campos escalares diferenciables en un abierto $\Omega \subseteq \mathbb{R}^n$, probar que

$$\nabla(fg) = (\nabla f)g + f(\nabla g)$$
 (en Ω).

2. Calcular el gradiente del campo escalar f definido por

$$f(\mathbf{x}) = \frac{1}{\|\mathbf{x}\|} \quad (\mathbf{x} \in \mathbb{R}^3, \mathbf{x} \neq 0),$$

y la derivada direccional de f en el punto (1,1,1), en la dirección del vector $\mathbf{i}-\mathbf{j}+\mathbf{k}$.

3. Calcular el gradiente del campo escalar f dado por

$$f(x, y, z) = x^{yz}$$
 $((x, y, z) \in \mathbb{R}^3, x > 0),$

y la derivada direccional de f en el punto (e, e, 0) en la dirección $\mathbf{j} - \mathbf{k}$.

4. Si f es un campo escalar y \mathbf{F} un campo vectorial, ambos diferenciables en un abierto $\Omega \subseteq \mathbb{R}^3$, comprobar que se verifican las siguientes igualdades en todo Ω :

$$\operatorname{div}(f\mathbf{F}) = \langle \nabla f | \mathbf{F} \rangle + f \operatorname{div}(\mathbf{F})$$

$$rot(f\mathbf{F}) = \nabla f \times \mathbf{F} + f rot(\mathbf{F}).$$

- **5.** Dar un ejemplo de campo vectorial \mathbf{F} diferenciable en \mathbb{R}^3 tal que $\mathrm{rot}(\mathbf{F})$ no sea ortogonal a \mathbf{F} . Así pues, $\nabla \times \mathbf{F}$ puede no ser ortogonal a \mathbf{F} .
- 6. Calcular la divergencia y el rotacional de los campos vectoriales F y G dados por

$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k} \quad ((x, y, z) \in \mathbb{R}^3)$$

$$\mathbf{G}(\mathbf{v}) = \frac{\mathbf{F}(\mathbf{v})}{\|\mathbf{v}\|^2} \quad (\mathbf{v} \in \mathbb{R}^3, \mathbf{v} \neq 0)$$

Relación de Ejercicios Nº 3

(Fecha límite de entrega: 17 de noviembre)

1. Un móvil recorre una trayectoria con origen en el punto (0, -5, 1) y vector velocidad

$$\mathbf{v}(t) = (t, e^t, t^2) \qquad (0 \le t \le 1).$$

Calcular la posición del móvil en el instante t = 1.

2. Calcular las rectas tangente y normal a la hipérbola de ecuación

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad (a, b > 0)$$

en un punto genérico (x_0, y_0) de la misma.

3. Calcular la longitud del camino (helicoidal) de ecuación

$$\gamma(t) = (\cos t, \sin t, t) \quad (0 \le t \le 4\pi).$$

4. Calcular la longitud de la cicloide:

$$x = t - \sin t$$
, $y = 1 - \cos t$ $(0 \le t \le 2\pi)$.

5. Calcular la integral de línea del campo escalar f, definido en todo el plano por

$$f(x,y) = 2x \quad ((x,y) \in \mathbb{R}^2),$$

a lo largo del camino γ dado por:

$$\gamma(t) = (t, t^2) \quad (-1 \le t \le 3/2).$$

6. Calcular $\int_{\gamma} f \, dl$ siendo

$$f(x, y, z) = y \sin z \ \left((x, y, z) \in \mathbb{R}^3 \right); \ \gamma(t) = (\cos t, \sin t, t) \ (0 \le t \le 2\pi).$$

- 7. Calcular el área de la parte del cilindro de ecuación $x^2 + y^2 = 2x$ comprendida dentro de la esfera de ecuación $x^2 + y^2 + z^2 = 4$.
- 8. Un trozo de cable tiene la forma del arco de la curva de ecuación $y = \log x$ comprendido entre los puntos de abcisas 1 y 2. Sabiendo que la densidad lineal del cable en cada punto es igual al cuadrado de su abcisa, calcular la masa total del cable.
- 9. Calcular la integral de línea del campo vectorial F en el espacio, definido por:

$$\mathbf{F}(\mathbf{x}) = \mathbf{x} \quad (\mathbf{x} \in \mathbb{R}^3),$$

a lo largo del camino γ de ecuación

$$\gamma(t) = (2\cos t, \sin t, t) \quad (0 \le t \le 2\pi).$$

10. Calcular
$$\int_{\gamma} \sin z \ dx + \cos z \ dy - (xy)^{1/3} \ dz$$
 siendo

$$\gamma(t) = \left(\cos^3 t, \, \sin^3 t, \, t\right) \qquad (0 \le t \le \pi/2).$$

Relación de Ejercicios Nº 4

Fecha límite de entrega: 9 de diciembre

1. Probar que el campo vectorial \mathbf{F} definido en todo el plano por

$$\mathbf{F}(x,y) = (2x \operatorname{sen} y - y \cos x)\mathbf{i} + (x^2 \cos y - \operatorname{sen} x)\mathbf{j} \quad (x,y \in \mathbb{R}),$$

es conservativo y calcular el potencial que se anula en el origen.

2. Probar que el campo vectorial

$$\mathbf{F}(x,y,z) = yz\mathbf{i} + (xz + 4yz^2)\mathbf{j} + (xy + 4y^2z + 3)\mathbf{k}$$
 $(x,y,z \in \mathbb{R}),$

es conservativo en \mathbb{R}^3 y calcular el potencial que se anula en el origen. Calcular también la integral de línea $\int_{\gamma} \mathbf{F} \cdot \mathbf{dl}$ siendo

$$\gamma(t) = (t, t^2, \cos \pi t) \quad (0 \le t \le 1).$$

3. Se considera el campo vectorial F definido por

$$\mathbf{F}(x,y) = \left(\frac{-y}{(x-1)^2 + y^2}, \frac{x^2 + y^2 - x}{(x-1)^2 + y^2}\right) \quad ((x,y) \in \mathbb{R}^2, (x,y) \neq (1,0)).$$

Calcular la integral de línea de \mathbf{F} a lo largo de un camino γ que recorra una circunferencia centrada en el punto (1,0). Probar que \mathbf{F} no es conservativo en $\mathbb{R}^2 \setminus \{(1,0)\}$ pero sí es conservativo en el dominio $\Omega = \{(x,y) \in \mathbb{R}^2 : x + |y| > 1\}$.

4. Probar que el campo vectorial F definido por

$$\mathbf{F}(x,y) = \log \frac{1}{\sqrt{x^2 + y^2}} \mathbf{i} + \arctan \operatorname{tg} \frac{y}{x} \mathbf{j} \quad (x, y \in \mathbb{R}, x \neq 0)$$

es conservativo en el dominio $\Omega = \{(x, y) \in \mathbb{R}^2 : x > 0\}.$

- **5.** Para $k=1,2,\ldots,n$, sea P_k un punto del plano. Se supone que la poligonal que une consecutivamente los puntos P_1,P_2,\ldots,P_n,P_1 es un camino simple (cerrado). Calcular el área del polígono de vértices P_1,P_2,\ldots,P_n .
- 6. Calcular la integral de línea

$$\int_{\gamma} (y + e^{x^3}) dx + (2x + \cos y^2) dy$$

siendo $\gamma(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi.$

7. Calcular la integral de línea

$$\int_{\gamma} \left(\cos x - \frac{1}{6}x^2y^3\right) dx + \left(\frac{1}{6}x^3y^2 + 2e^y\right) dy$$

siendo $\gamma(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi.$

Relación de Ejercicios Nº 5

Fecha límite de entrega: 12 de enero

- 1. Calcular las ecuaciones del plano tangente y la recta normal en el punto P a la superficie indicada, en cada uno de los siguientes casos.
 - (a) $z^2 2x^2 2y^2 = 12$; P = (1, -1, 4)
 - (b) $z = \log(x^2 + y^2)$; P = (1, 0, 0)
 - (c) $\Phi(u,v) = (u+v,3u^2,u-v); P = (2,3,0).$
- 2. Calcular el área de la parte de la semiesfera de ecuación $z = (9 x^2 y^2)^{1/2}$ comprendida dentro del cilindro circular de ecuación $x^2 + y^2 = 4$.
- 3. Calcular el área de la superficie parametrizada por las ecuaciones

$$\begin{cases} x = (2 + \cos u) \cos v \\ y = (2 + \cos u) \sin v \\ z = \sin u \end{cases} (u, v \in [-\pi, \pi])$$

- 4. Calcular la integral de superficie $\iint_S z^2 ds$, siendo S la esfera unidad, de ecuación $x^2 + y^2 + z^2 = 1$.
- **5.** Sea S la semiesfera definida por la ecuación $x^2 + y^2 + z^2 = 1$ con $z \ge 0$, orientada mediante la normal exterior. Calcular la integral de superficie $\iint_S \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{ds}}$ donde

$$\mathbf{F}(x, y, z) = (x + 3y^5)\mathbf{i} + (y + 10xz)\mathbf{j} + (z - xy)\mathbf{k}$$
 $(x, y, z \in \mathbb{R}).$

6. Calcular la integral de superficie $\iint_S \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{ds}}$, siendo

$$\mathbf{F}(x, y, z) = \mathbf{i} + \mathbf{j} + z(x^2 + y^2)\mathbf{k}$$
 $(x, y, z \in \mathbb{R})$

y S la superficie cilíndrica definida por $x^2+y^2=1,$ con $0\leq z\leq 1,$ orientada mediante la normal exterior.

7. Usar el Teorema de Stokes para evaluar la integral de línea

$$\int_{\gamma} -y^3 \, dx \, + \, x^3 \, dy \, -z^3 \, dz,$$

sabiendo que el camino γ recorre la curva que se obtiene por intersección del cilindro $x^2+y^2=1$ con el plano x+y+z=1.

8. Calcular $\iint_S \overrightarrow{\text{rot}(\mathbf{F})} \cdot \overrightarrow{\mathbf{ds}}$ donde

$$\mathbf{F}(x, y, z) = (x^2 + y - 4)\mathbf{i} + 3xy\mathbf{j} + (2xz + z^2)\mathbf{k}$$
 $(x, y, z \in \mathbb{R}),$

y S es la semiesfera de ecuación $x^2+y^2+z^2=16$ con $z\geq 0$, orientada mediante la normal exterior.

- 9. Sea $\mathbf{F}(x,y,z) = 2x\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}$ para cualesquiera $x,y,z \in \mathbb{R}$ y S la esfera $x^2 + y^2 + z^2 = 1$ orientada con la normal exterior. Calcular $\iint_S \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{ds}}$.
- 10. Usar el Teorema de la Divergencia para calcular la integral $\iint_S (x^2 + y + z) ds$, siendo S la esfera unidad $x^2 + y^2 + z^2 = 1$.

Relación de Ejercicios Nº 6

1. Probar las siguientes identidades trigonométricas:

(1)
$$\sin 3\varphi = 3 \sin \varphi - 4 \sin^3 \varphi$$

$$(2) \quad \cos 4\varphi = 8\cos^4 \varphi - 8\cos^2 \varphi + 1$$

2. Probar que si $f: \mathbb{R} \to \mathbb{C}$ es una función de clase \mathbb{C}^1 y periódica con periodo T, los coeficientes de Fourier de f y de su derivada guardan la siguiente relación:

$$c_n(f') = \frac{2\pi i n}{T} c_n(f) \quad (n \in \mathbb{Z}).$$

Deducir la relación que guardan $a_n(f')$ y $b_n(f')$ con $a_n(f)$ y $b_n(f)$. Comprobar que, tanto en su forma real como en su forma compleja, la serie de Fourier de f' se obtiene derivando término a término la serie de Fourier de f.

3. Dada una función periódica integrable $f: \mathbb{R} \to \mathbb{C}$ y fijado $a \in \mathbb{R}$, se consideran las funciones g y h definidas por:

$$g(t) = f(t - a), h(t) = f(at) \quad (t \in \mathbb{R}).$$

Calcular los coeficientes de Fourier de g y h a partir de los de f.

4. Calcular las series de Fourier de las funciones de periodo π dadas por:

$$\varphi(t) = |\operatorname{sen} t|, \ \psi(t) = |\cos t| \quad (t \in \mathbb{R}).$$

 ${f 5.}$ Usando la serie de Fourier de la función de periodo $\,2\,$ definida por:

$$f(t) = |t| \quad (-1 \le t \le 1) \, ; \quad f(t+2) = f(t) \quad (t \in {\rm I\!R}),$$

demostrar que: $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \, = \, \frac{\pi^2}{8} \, .$

6. Dado un número real α que no sea entero, se considera la función $f: \mathbb{R} \to \mathbb{C}$, de periodo 2, que verifica

$$f(t) = e^{\pi i \alpha t}$$
 para $-1 \le t < 1$

Usando la serie de Fourier de f, probar que

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\alpha - n)^2} = \frac{\pi^2}{\operatorname{sen}^2 \pi \alpha}$$