Publicaciones FQM-116

  • DAVID ARCOYA : Resultados de multiplicidad para ecuaciones diferenciales superlineales usando métodos variacionales duales. Actas de X C.E.D.Y.A., 1.987, 26-30.
  • DAVID ARCOYA : Un problema no lineal de contorno con una no linealidad de tipo periódico. Actas de las XII Jornadas Hispano-Lusas, 1.988
  • DAVID ARCOYA y A. CAÑADA (Universidad de Granada): Critical point theorems and applications to nonlinear boundary value problems, Nonl. Anal. T.M.A. 14 (1.990), 393-411. Resumen en Zbl. Math. 706.34019 y en Math. Reviews MR1041504 (91c:34023).
  • DAVID ARCOYA: Periodic solutions of Hamiltonian systems with strong resonance at infinity. Comunicación preliminar en Extracta Mathematicae, 4 (1.989), 33-35.
  • DAVID ARCOYA: Periodic solutions of Hamiltonian systems with strong resonance at infinity, J. Diff. and Int. Eqns. 3 (1.990), 909-921. Resumen en Zbl. Math. 722.34036 y en Math. Reviews MR1059339 (91i:58112).
  • DAVID ARCOYA y A. CAÑADA : The dual variational principle and discontinuous elliptic problems with strong resonance at infinity. Comunicación preliminar en Extracta Mathematicae, 5 (1.990), 12-14.
  • DAVID ARCOYA: The dual variational principle and discontinuous elliptic problems with strong resonance at infinity, Nonl. Anal. T.M.A 15 (1.990), 1145-1154. Resumen en Zbl. Math. 758.35033 y en Math. Reviews MR1082289 (91m:35230).
  • DAVID ARCOYA y M. CALAHORRANO (Scuola Normale Superiore di Pisa, (Italia)): Multivalued non- positone problems , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei. (9), Mat. Appl. 1 (1990), no. 2, 117-123. Resumen en Zbl. Math. 719.35024 y en Math. Reviews MR1081394 (91j:35101
  • DAVID ARCOYA: Existencia y multiplicidad de soluciones para problemas de contorno elípticos semilineales en resonancia . Servicio de publicaciones de la Universidad de Granada, 1990.
  • DAVID ARCOYA: Positive solutions for semilinear Dirichlet problems in an annulus , J.Diff. Eqns. Vol 94, No. 2, 217-227 (1.991). Resumen en Zbl. Math. 768.35029 y en Math. Reviews MR1137613 (92j:35058).
  • DAVID ARCOYA: Some discontinuous problems , International Conference on Differential Equations (Barcelona, 1991), 277-281, edited by C. Perelló, C. Simó and J. Solá-Morales. World Scientifc Publishing, River Edge, NJ, 1993. Resumen en Zbl. Math. 0938.35541 y en Math. Reviews MR1242251 (94e:00020).
  • A. CAÑADA y J.L. GÁMEZ: Positive Solutions of Nonlinear Elliptic Systems . Math.Mod. Meth. In Appl. Sci. Math.Mod. Meth. In Appl. Sí. A, 23, 823-837, 1993.
  • A. CAÑADA y J.L. GÁMEZ: Coexistence States for Nonlinar Elliptic Problems arising from Biology. Extracta Mathematicae A,8,153-157, 1993.
  • A. CAÑADA y J.L. GÁMEZ: Some new applications of the method of Lower and Uper Solutions to Elliptic Problems . Appl. Math. Letters. A,6,41-45, 1993.
  • DAVID ARCOYA, A. AMBROSETTI (entonces en la Scuola Normale Superiore di Pisa (Italia) y, en la actualidad en el S.I.S.A, Trieste, Italia) y B. Buffoni (entonces en la Scuola Normale Superiore di Pisa (Italia) y en la actualidad en E.P.F.L. de Lausanne (Suiza)): Positive solutions for some semi-positone problems via bifurcation theory, J. Diff. and Int. Eqns. 7 (1.994), 655-663.
  • DAVID ARCOYA y M. CALAHORRANO: Some discontinuous problems with a quasilinear operator , J. of Math. Anal. and Appl. 187, 1059-1072 (1.994). Resumen en Zbl. Math. 815.35018 y en Math. Reviews MR1298837 (95j:35065).
  • DAVID ARCOYA y A. ZERTITI: Existence and nonexistence of radially symmetric non-negative solutions for a class of semi-positone problems in an annulus . Rendiconti di Matematica, VII, 14, Roma (1994), 4, 625-646. Resumen en Zbl. Math. 814.35031 y en Math. Reviews MR1312821 (95k:35075).
  • A. CAÑADA y J.L. GÁMEZ: Existence of solutions for some semilinear degenerate elliptic systems with applications to Population Dynamics . Diff. Eqns. And Dyn . Syst. A,3,189-204, 1995.
  • DAVID ARCOYA y D.G. COSTA (Universidade do Brasilia (Brazil)): Nontrivial solutions for a strongly resonant problem , J. of Diff. And Int. Eqns., 8-1 (1.995), 151-159 .
  • DAVID ARCOYA y L. BOCCARDO (Universitá di Roma(Italia)) : Nontrivial solutions to some nonlinear, equations via minimization .Variational Methods in Nonlinear Analysis, edited by A. Ambrosetti and K.C. Chang, 49-53, Gordon and Breach Publishers, Basel, 1.995 .Resumen en Zbl. Math. 0849.49004 y en Math. Reviews MR1451146 (98f:35043).
  • DAVID ARCOYA y SALVADOR VILLEGAS: Nontrivial solutions for a Neumann problem with a nonlinearity term asymptotically linear at 8 and superlinear at + 8, asymptotically linear at 8 and superlinear at + 8 . Math. Z. 219 (1995), 499-513. Resumen en Zbl. Math. 834.35048 y en Math. Reviews MR1343659 (96i:35031).
  • DAVID ARCOYA y P. DRÁBEK (Universidad de Bohemia Oeste, (República Checa) y A. Zertiti: Minimization problem for some degenerated functionals: nonnegative and bounded solutions. Differentsial'nye Uravneniya 31 (1995), 2, 245-252, 365; traducción en inglés en Differential. Equations (Russian), Volume 31, No 2. (1995), 224-232. Resumen en Zbl. Math. 0855.35030 y en Math. Reviews MR1373786 (97a:49047).
  • DAVID ARCOYA y L. BOCCARDO: A min-max theorem for multiple integrals of the Calculus of Variations and applications . Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur Rend. Lincei. (9),Mat. Appl. 6 (1995), no. 1, 29-35. Resumen en Zbl. Math. 831.49012 y en Math. Reviews MR1340279 (96d:49011).
  • DAVID ARCOYA y S. VILLEGAS: Dirichlet problems with asymmetric nonlinearities, Proc. XIV C.E.D.Y.A., Vic (España) 1995. Resumen en Math. Reviews MR1655387 (99g:00036).
  • DAVID ARCOYA y A. AMBROSETII: On a Quasilinear Problem at Strong Resonance. Topological Methods in Nonlinear Anal. 6 (1995), 255-264. Resumen en Zbl. Math. 859.35030 y en Math. Reviews MR1399539 (97i:35045).
  • S. Cingolani y J.L. GÁMEZ: Positive solutions of a semilinear elliptic equation on R^n with indefinite non-linearity . Adv.in Diff.Eqn. A, 1, 773-791, 1996.
  • DAVID ARCOYA y L. BOCCARDO: Critical points for multiple integrals of Calculus of Variations,Arch. Rat. Mech. Anal. 134 no. 3 (1996), 249-274. Resumen en Zbl. Math. 884.58023 y en Math. Reviews MR1412429 (97h:49003).
  • DAVID ARCOYA y A. ZERTITI: Global branching for discontinuous problems in the exterior domain of a ball . Bolletino U.M.I. (7) 10-A (1996),641-652. Resumen en Zbl. Math. 881.35041 y en Math. Reviews MR1420946 (97j:35042).
  • DAVID ARCOYA y L. ORSINA (Universitá di RomaI): Landesmann-Lazer conditions and quasilinear elliptic equations, Nonlinear Anal. TMA. 28 (1997), 1623-1632. Resumen en Zbl. Math. 871.35037 y en Math. Reviews MR1430505 (97m:35060).
  • DAVID ARCOYA y S. VILLEGAS: Dirichlet Problems with Asymmetric Nonlinearities . Comm. Appl. Nonlinear Anal. 4 (1997), n. 1, 81-90. Resumen en Zbl. Math. 866.35036 y en Math. Reviews MR1425019 (97m:35075).
  • A. CAÑADA, P. DRÁBEK y J.L. GÁMEZ: Existence of positive solutions for some problems with nonlinear diffusion . Trandactions of the A.M.S. A,349, 4231-4249, 1997.
  • J.L. GÁMEZ: Existence and Bifurcation of Postive Solutions of a Semilinear Elliptic Problem on R^n . Nonl Diff. Eqns. Appl. A,4, 341-357,1997.
  • J.L. GÁMEZ: Sub- and Super- solutions in Bifurcation Problems. Nonl. An., T.M.A. A, 28, 625-632, 1997.
  • A. AMBROSETTI y J.L. GÁMEZ: Branches of Positive Solutions for some Semilinear Schrödinger equations. Math. Zeit. A,3, 347-362, 1997.
  • J.L. GÁMEZ y A. MONTERO: Uniqueness of the optimal for a Lotka-Volterra control problem with a large crowding effect . ESAIM: COCV. A, 36, 1171-1189, 1998.
  • A. CAÑADA, J.L. GÁMEZ y A. MONTERO: Study of a nonlinearoptimal control problem for diffusive Volterra-Lotka equations . SIAM J.Control Optim. A,2, 1-12, 1997.
  • DAVID ARCOYA: Quasilinear elliptic equations with Neumann boundary condition viacritical point theory. International Conference on Differential Equations (Lisboa (Portugal), 1995), 247-252. World Scientific Publishing, River Edge, NJ, 1998. Resumen en Zbl. Math. 0963.35063 y en Math. Reviews 1 639 371 (99d:00015).
  • S. VILLEGAS: On the structure of the solutions of a B.V.P. with a concave-convex nonlinerity. International Conference of Differential equations (Lisboa 1995), 541-545. World Sci.Publishing, River Edge, NJ, 1998.

Ecuaciones semilieales y casilineales en dominios no acotados (Últimos 10 años)

  • A. AMBROSETTI, D. ARCOYA y J.-L. GÁMEZ, Asymmetric bound states of differential equations in nonlinear optics. Rendiconti del Seminario Matematico di Padova, 100 (1998) 231-247.
  • D. ARCOYA , S. CINGOLANI y J.-L. GÁMEZ, Asymmetric modes in symmetric nonlinear optical waveguided. Siam J. Math. Anal. 30-6 (1999), 1391-1400.
  • B. PELLACCI y S. VILLEGAS, Some existence results for a class of resonant problems on RN. Comm. In Appl. Anal. 4 (2000), 21-30.
  • S. CINGOLANI y J.-L. GÁMEZ, Asymmetric positive solutions for a symmetric nonlinear problem in RN. Calc. Of Var. and P.D.E. 11 (2000), 97-117.
  • M. BADIALE, B. PELLACCI y S. VILLEGAS, Elliptic problems on RN with jumping nonlinearities: perturbations results. Differential and Int. Equat., 13 (2000), 837-868.
  • B. ABDELLAOUI, E. COLORADO e I. PERAL, Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Journal of the European Mathematical Society, vol. 6 (2004), 1-30.
  • E. COLORADO e I. PERAL, Eigenvalues and bifurcation for elliptic equations with mixed Dirichlet-Neumann boundary conditions related to Caffarelli-Kohn-Nirenberg inequalities. Topological Methods in Nonlinear Analysis, vol. 23 no. 2 (2004), 239-273.
  • B. ABDELLAOUI, E. COLORADO e I. PERAL, Some improved Caffarelli-Kohn-Nirenberg inequalities. Calculus of Variations and Partial Differential Equations, vol. 23, no. 3 (2005), 327-345.
  • A. AMBROSETTI y E. COLORADO, Standing waves of some coupled nonlinear Schrödinger equations. Abstracts International Congress of Mathematicians, ICM 2006, 394-395.
  • B. ABDELLAOUI, E. COLORADO e I. PERAL, Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems. Advances in Differential Equations, vol. 11, no 6, p´ag. 667-720, (2006).
  • A. AMBROSETTI y E. COLORADO, Bound and Ground States of Coupled Nonlinear Schr¨odinger Equations. Comptes Rendus Mathematique Acad. Sci. Paris, Ser. I vol. 342, pág. 453-458, (2006).
  • B. ABDELLAOUI, E. COLORADO y M. SANCHÓN, Regularity of entropy solutions of quasilinear elliptic problems related with Hardy-Sobolev inequalities. Advanced Nonlinear Studies, vol. 6, p´ag. 547-562, (2006).
  • A. AMBROSETTI y E. COLORADO, Standing Waves for Some Systems of Coupled Nonlinear Schr¨odinger Equations. Actas del congreso CEDYA 2007, 8 p´ags.
  • A. AMBROSETTI y E. COLORADO, Standing Waves of Some Coupled Nonlinear Schrödinger Equations. Journal of the London Mathematical Society, 75, 67–82 (2007).
  • A. AMBROSETTI, E. COLORADO y D. RUIZ, Multi-Bump Solitons to Linearly Coupled Nls Systems. Calculus of Variations and Partial Differential Equations 30 (2007) 85-112.
  • S. VILLEGAS, Asymptotic Behavior of Stable Radial Solutions of Semilinear Elliptic Equations in RN. Journal de Mathematiques. Pures et Appliquees, 88 (2007), 241-250.
  • F. CHARRO, E. COLORADO e I. PERAL, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concaveconvex right hand side. Journal of Differential Equations (2009), doi:10.1016/j.jde.2009.01.013.

Ecuaciones semilineales en dmonios acotados. (Últimos 10 años)

  • D. ARCOYA , Recent results for asymmetric nonlinear boundary value problems. Nonlinear Functional Analysis and Applications to Differential Equations, Ed. por A. Ambrosetti, K-C. Chang y I. Ekeland, 1-35. World Scientific Publishing, River Edge, NJ, 1998.
  • S. VILLEGAS, A Neumann problem with asymmetric nonlinearity and a related minimizing problem. J. Differential Equat. 145 (1998), 145-155.
  • A. CAÑADA , J.-L. GÁMEZ y A. J. MONTERO, Study of a nonlinear optimal control problem for diffusive Volterra-Lotka equations. Siam J. Control Optim. 36 (1998), 1171-1189.
  • D. ARCOYA y J.-L. GÁMEZ, Bifurcation Theory and application to semilinear problems near the resonance parameter. Nonlinear Analysis and its Applications to Differential Equations, editado por M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez, publicado en Progress in Nonlinear Differential Equations and Their Applications 43, Birkh¨ouser Boston, MA, 2001, pag. 189-200.
  • D. ARCOYA y J.-L. GÁMEZ, Bifurcation Theory and related problems: Resonance and Antimaximum Principle. Commun. in Partial Differential Equations, 26 (9 & 10), (2001) 1879-1911.
  • D. ARCOYA , J.-L. GÁMEZ, L. ORSINA e I. PERAL, Local existence results for sub-super-critical elliptic problems. Comm. in Applied Anal. 5 (2001), 557-569.
  • E. COLORADO e I. PERAL, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions. Journal of Functional Analysis, vol. 199 no. 2 (2003), 468-507.
  • J.L. GÁMEZ y J.F. RUIZ, Bifurcation of solutions of elliptic problems: Local and Global behaviour. Topol. Meth. in Nonl. Anal. 23 (2004), 203-212.
  • B. ABDELLAOUI, E. COLORADO e I. PERAL, Some remarks on elliptic equations with singular potentials and mixed boundary conditions. Advanced Nonlinear Studies, 4 (2004), 503-533. No especial dedicado al 60 cumpleaños del Prof. A. Ambrosetti.
  • P. GIRG, F. ROCA y S. VILLEGAS, Semilinear Sturm-Liouville problem with periodic nonlinearity. Nonlinear Analysis 61 (2005), no. 7, 1157-1178.
  • A. CAÑADA , J.A. MONTERO y S. VILLEGAS, Liapunov-type inequalities and Neumann boundary value problems at resonance. Mathematical Inequalities and Applications 8 (2005), no. 3, 459-475.
  • A. CAÑADA , J.A. MONTERO y S. VILLEGAS, Liapunov-type Inequalities and Applications to PDE. Progress in Nonlinear Differential Equations and Their Applications, vol. 63, 103-110 (2005).
  • B. ABDELLAOUI, E. COLORADO e I. PERAL, Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure and Applied Analysis, vol. 5, no. 1 (2006), 29-54.
  • A. CAÑADA , J.A. MONTERO y S. VILLEGAS, Liapunov inequalities for P.D.E. Journal of unctional Analysis, 237(2006), 176-193.
  • J.L. GÁMEZ y J.F. RUIZ, Sharp Estimates for the Ambrosetti-Hess Problem and consequences. JEMS, J. Eur. Math. Soc., 8 (2006), 287-294.
  • D. ARCOYA y J. CARMONA, On two problems studied by Ambrosetti. J. European Math. Soc., 8 (2006), 181-188.
  • A. CAÑADA , J.A.MONTERO y S. VILLEGAS, Lyapunov-Type Inequalities for Differential Equations. Mediterr. J. Math. 3 (2006), No. 2, 177-187.
  • J.L. GÁMEZ y J.F. RUIZ-HIDALGO, Detailed Analysis on Local Bifurcation from Infinity for Non-linear Elliptic Problems. Journal of Mathematical Analysis and Applications, 338(2), 1458-1468 (2008).
  • A. CAÑADA y S. VILLEGAS, Optimal Lyapunov inequalities for disfocality and Neumann boundary conditions using Lp norms. Discrete Contin. Dyn Syst A 20, No 4, 877-888 (2008).

Ecuaciones Casilineales en dominios acotados. (Últimos 10 años)

  • D. ARCOYA , J. I. D´IAZ y L. TELLO, S-Shaped bifurcation branch in a quasilinear multivalued model arising in Climatology. J. of Diff. Eqns. 150, 215-225 (1998).
  • D. ARCOYA y L. BOCCARDO, Some remarks on critical point theory. NoDEA 6 (1999), 79-100.
  • D. ARCOYA , L. BOCCARDO y L. ORSINA, Existence of critical points for some noncoercive functionals. Anals. of Inst. Henri Poincaré(C) Analyse non linéaire, Volume 18 -Número 4, (2001) 437-457.
  • D. ARCOYA , J. CARMONA y B. PELLACCI, Bifurcation for some quasilinear Operators . Proc. Royal Soc. Edinburgh, 131 A, 733-765, (2001).
  • D. ARCOYA y J. CARMONA, Quasilinear elliptic problems interacting with its asymptotic spectrum . Nonlinear Anal. T.M.A. Volume 52- Num. 6 , 1591-1616, (2003).
  • J. CARMONA, S. CINGOLANI y G. VANNELLA, Estimates for critical groups of solutions to quasilinear elliptic systems . Elect. J. of Diff. Equat., (2003) 1-13.
  • J. CARMONA y A. SUÁREZ, An eigenvalue problem for a non-bounded quasilinear operator. Proceedings of the Edinburgh Mathematical Society, 47, (2004) 353-363.
  • D. ARCOYA y N. Del TORO, Semilinear elliptic problems with nonlinearities depending on the derivative. Comment. Math. Univ. Carolinae 44, 3 (2003) 413-426.
  • D. ARCOYA y J. ROSSI, Antimaximum principle for quasilinear problems. Adv. Diff. Equat. (2004) 9/9-10, 1185-1200.
  • E. COLORADO e I. PERAL, Some results for elliptic eigenvalue problems with moving mixed boundary conditions. EQUADIFF 2003, World Sci. Publ., Hackensack, NJ, 2005, 540-545.
  • T. LEONORI y F. PETITTA, Asymptotic behavior of solutions for parabolic equations with natural growth term and irregular data. Asymptotic Analysis 48 (3) (2006), 219-233.
  • D. ARCOYA y D. RUIZ, The Ambrosetti-Prodi problem for the p-laplace operator. Comm. P.D.E., 31 (2006), 849–865.
  • B. ABDELLAOUI, E. COLORADO y I. PERAL. Some critical elliptic problems with mixed Dirichlet-Neumann boundary conditions related with Sobolev and Hardy-Sobolev constants. Journal of Mathematical Analysis and Applications, 332, 1165-1188, (2007).
  • D. ARCOYA y J. CARMONA, A Nondifferentiable Extension of a Theorem of Pucci and Serrin and Applications. Journal of Differential Equations, 235 (2007) 683-700.
  • D. ARCOYA, J. CARMONA y P. J. MARTÍNEZ-APARICIO, Desigualdades variacionales casilineales elípticas con crecimiento natural en el gradiente. Actas del congreso CEDYA 2007, 6 p´ags.
  • D. ARCOYA, J. CARMONA y P. J. MARTÍNEZ-APARICIO, Elliptic Obstacle Problems with Natural Growth on the Gradient and Singularities. Adv. Nonlinear Stud. 7 (2007) 299-317.
  • T. LEONORI, Large solutions for a class of nonlinear elliptic equations with gradient terms. Adv. Nonlinear Stud., 7 (2007), 237-269.
  • T. LEONORI, Bounded solutions for some Dirichlet problems with L1 data. Boll. U.M.I., sez. B. 4 (2007) 785-796.
  • T. LEONORI y F. PETITTA, Existence and regularity results for some singular elliptic problem. Adv. Nonlinear Stud., 7 (2007),329-344.
  • D. ARCOYA y P. J. MARTÍNEZ-APARICIO, Quasilinear equations with natural growth. Rev. Mat. Iberoam., 24 (2008), 597–616.
  • D. ARCOYA y P. J. MARTÍNEZ-APARICIO, Quasilinear equations with quadratic growth in rw and large solutions for semilinear equations. Abstracts International Congress of Mathematicians, ICM 2006, 396.
  • D. ARCOYA y L. BOCCARDO, Introducción al estudio de la ecuación de Euler de algunos funcionales del Cálculo de variaciones. Boletín de la Sociedad Espa˜nola de Matemática Aplicada, 44 7–32 (2008).
  • T. LEONORI y A. PORRETTA, The boundary behaviour of blowup solutions related to a state constraint problem. SIAM Math. Anal. 39 (2008), 1295-1327.
  • D. ARCOYA y S. SEGURA DE LEÓN, Uniqueness for some elliptic equations with lower order terms. ESAIM: Control, Optimization and the Calculus of Variations, (2008), DOI: 10.1051/cocv:2008072
  • D. ARCOYA, S. BARILE y P.J. MARTÍNEZ-APARICIO, Singular quasilinear equations with quadratic growth in the gradient without sign condition. J. Math. Anal. Appl., 350 (2009), 401–408.
  • D. ARCOYA, J. CARMONA, T. LEONORI, P. J. MARTÍNEZ-APARICIO, L. ORSINA y F. PETITTA, Quadratic quasilinear equations with general singularities. J. Differential Equations, (2009), 246 (2009) 4006–4042 .
  • L. BOCCARDO y T. LEONORI, Local property of solutions of elliptic equations depending on local property of data. Methods and Applications of Analysis, 15 (2009) 53-64.
  • D. ARCOYA y S. SEGURA DE LEÓN, Uniqueness of solutions for some elliptoc equations with a quadratic gradient term. ESAIM Control Optim. Calc. Var. 16 (2010), no. 2, 327-336.
  • P. J. MARTÍNEZ-APARICIO, Singular Dirichlet problems with quadratic gradient, Bolletino U.M.I. (9) II (2009), 3, 559-574.
  • D. ARCOYA, J. CARMONA y P. J. MARTÍNEZ-APARICIO, Bifurcation for quasilinear elliptic singular bvp, Commun. Partial Differential Equations, aparecerá.
  • P. J. MARTÍNEZ-APARICIO y F. PETITTA, Parabolic equations with nonlinear singularities, Nonlinear Analysis, aparecerá.