Investigadores
- DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
- Cabello Piñar, Juan Carlos
- Fernández Polo, Francisco José
- Martínez Moreno, Juan
- Nieto Arco, Eduardo Antonio
- Peralta Pereira, Antonio M.
- CENTRO DE MAGISTERIO LA INMACULADA: Roura Redondo, Raúl
- UNIVERSIDADE FEDERAL DE SANTA CATARINA (UFSC): Garcés Pérez, Jorge Jos
Memorias
- Memoria Académica 2014-2015
- Memoria Académica 2015-2016
- Memoria Académica 2016-2017 (pdf)
- Memoria Académica 2017-2018
- Memoria Académica 2018-2019
- Memoria Académica 2019-2020
- Memoria Académica 2021-2022 (pdf)
Research Lines
Mathematical Subject Classification - MSC2010
-
17 Nonassociative rings and algebras
-
17C65 Jordan structures on Banach spaces and algebras
-
41A50 Best approximation, Chebyshev systems
-
41A52 Uniqueness of best approximation
-
46 Functional analysis
-
46B08 Ultraproduct techniques in Banach space theory
-
46B20 Geometry and structure of normed linear spaces
-
46E15 Banach spaces of continuous, differentiable or analytic functions
-
46G20 Infinite-dimensional holomorphy
-
46H Topological algebras, normed rings and algebras, Banach algebras
-
46L Selfadjoint operator algebras (C*-algebras, von Neumann (W*-) algebras, etc.)
-
46L57 Derivations, dissipations and positive semigroups in C∗-algebras
-
47 Operator theory
-
47B Special classes of linear operators
-
47B33 Composition operators
-
47B Special classes of linear operators
-
47B48 Operators on Banach algebras
-
47B49 Transformers, preservers (operators on spaces of operators)
-
81 Quantum theory
-
81Q12 Non-selfadjoint operator theory in quantum theory
The so-called preservers problems appear as a main topic of study in many different branches of mathematics.
These problems concern with the determination of those maps between banach spaces, banach algebras or other analytic structures, preserving a property which is determined by the geometric structure of the underlying banach space, or by a property which is given by the algebraic structure. There is a wide range of deep and current problems on maps preserving certain geometric or algebraic. The most significant goals in this project can be briefly resumed in the next items:
- Extension of surjective isometries between the unit spheres of von Neumann algebras (i.e. Tingley’s problem for von Neumann algebras).
- Tingley’s problem for C*-algebras, p-Schatten-von Neumann spaces, preduals of von Neumann algebras, non-commutative Lp- spaces, etc.
- The Mazur-Ulam property for C(K) spaces.
- The Mazur-Ulam property for finite dimensional C*-algebras, finite von Neumann algebras, trace class operators, von Neumann algebras, preduals of von Neumann algebras.
- Tingley´s problem and Mazur-Ulam property for other operator algebras (Lipschitz algebras, uniform algebras, etc.) and spaces (Hardy spaces, holomorphic functions).
- (Weak-)2-local isometries on uniform algebras.
- (Weak-)2-local derivations on von Neumann algebras and C*-algebras.
- Multiplicativity of (weak-)2-local *-homomorphisms on a C*-algebra.
- (Weak-)2-local isometries on Lipschitz algebras.
- (Weak-)2-local isometries on other operator algebras and on other operator spaces (like trace class operators, p-Schatten-von Neumann classes, non-commutative Lp spaces, etc.).
- Automatic continuity of linear maps which are derivations, or triple derivations, or homomorphisms at zero or at the unit element, or at a unitary element.
- Automatic continuity of generalized derivations.
- Connections with those (continuous) linear maps preserving orthogonality (i.e., maps sending orthogonal elements to orthogonal elements).