Odd linking A new view on Min-Max

Hans-Jörg Ruppen

Ecole polythechnique fédérale de Lausanne (EPFL) Switzerland

October 2011

590

P

The starting point: a Schrödinger equation The case where $\lambda < \lambda_1$ The case where λ is in a gap

Outline

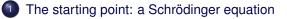
The starting point: a Schrödinger equation

- Definiteness— Indefiniteness 2
 - Below the spectrum
 - Inside a gap
- The case where $\lambda < \lambda_1$ 3
- 4 The case where λ is in a gap

The starting point: a Schrödinger equation Definiteness—Indefiniteness The case where $\lambda < \lambda_1$

The case where λ is in a gap

Outline

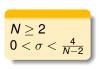


- Definiteness— Indefiniteness
 Below the spectrum
 Incide a gap
 - Inside a gap
- 3 The case where $\lambda < \lambda_1$
- [m 4) The case where λ is in a gap

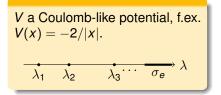
Non-linear Schrödinger equation of the form

$$\left\{ egin{array}{ll} -\Delta u(x)+V(x)u(x)-q(x)|u(x)|^{\sigma}u(x)=\lambda u(x), & x\in \mathbb{R}^N\ u\in H^1(\mathbb{R}^N)\setminus\{0\}, \end{array}
ight.$$

where



 $q \in L^{\infty}(\mathbb{R}^N)$ q > 0(to keep the presentation simple)



Spectrum of $-\Delta + V$: the hydorgen-like case

A nucleus of mass m_1 and of charge Ze is surrounded by an electron of mass m_2 and of charge -e:

Discrete spectrum:

$$\sigma_d(-\Delta+V)=\{\lambda_n\mid n\in L\},\$$

where

- $\lambda_1 < \lambda_2 < \cdots < 0$, λ_1 being simple;
- $L = \mathbb{N}$ or $L = \{1, 2, \dots, \ell\}$ for some $\ell \in \mathbb{N}$;
- $\lim_{n\to\infty} \lambda_n = 0^-$ if $L = \mathbb{N}$.

followed by a continuous spectrum $[0, \infty[$.

The formulation in an abstract setting

$$Au - \nabla \Phi(u) = \lambda Lu$$
, $u \in$ a Hilbert-space H

with

• A and $L: H \rightarrow H$ are self-adjoint and bounded operators with

$$(Au, u) = \int_{\mathbb{R}} \nabla u \cdot \nabla V + Vuv \, dx$$

and

0

$$(Lu, v) = \int_{\mathbb{R}} uv \, dx.$$

$$\Phi(u):=\frac{1}{2+\sigma}\int_{\mathbb{R}}q(x)|u|^{2+\sigma}\,dx.$$

The corresponding energy functional

Energy

$$I_{\lambda}(u) := \frac{1}{2}((A - \lambda L)u, u) - \Phi(u)$$

• "Weak" problem: for each $\lambda \in \sigma(-\Delta + V) = \sigma(A)$, find $u \in H \setminus \{0\}$ with

 $\nabla I_{\lambda}(u) = 0.$

Below the spectrum Inside a gap

Outline

2 Definiteness— Indefiniteness

Below the spectrumInside a gap

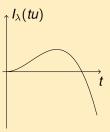
3 The case where $\lambda < \lambda_1$

 ${f 4}$ The case where λ is in a gap

Below the spectrum Inside a gap

For $\lambda < \lambda_1$

The quadratic part of the energy is positive definite. Thus we have the following radial behavior:



 Below the spectrum

 λ1

For
$$\lambda < \lambda_1$$

Thus I_{λ} is positive in a vicinity of 0, this being so uniformly:

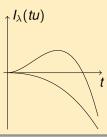
Proposition We have, for $\lambda < \lambda_1$ kept fixed,that there exists $\rho_{\lambda} > 0$ and $\alpha_{\lambda} > 0$ such that

 $I_{\lambda}(u) \geq \alpha_{\lambda} > 0, \quad \forall u \in H \text{ with } ||u|| = \rho_{\lambda}.$

Below the spectrum Inside a gap

Inside a gap

The quadratic part of the energy is indefinite. Thus we have the following radial behavior:



Odd linking

Below the spectrum Inside a gap

Decomposition of H

Orthogonal decomposition

$$H = Y \oplus Z$$

so that

• We have, for
$$y \in Y$$
,

$$((\mathbf{A} - \lambda \mathbf{L})\mathbf{y}, \mathbf{y}) \leq -\mathbf{n}(\lambda) \|\mathbf{y}\|^2$$

イロト イポト イヨト イヨト

and, for $z \in Z$, $((A - \lambda L)z, z) \ge m(\lambda) ||y||^2$ with $n(\lambda) > 0$ and $m(\lambda) > 0$. Remark that we can take $Y = \{0\}$ if $\lambda < \lambda_1$.

teness Below the spectrum $< \lambda_1$ Inside a gap

Behavior on Z

Thus I_{λ} , when restricted to Z, is positive in a vicinity of 0, this being so uniformly:

Proposition

We have, for $\lambda \in]-\infty, 0]$ kept fixed,that there exists $\rho_{\lambda} > 0$ and $\alpha_{\lambda} > 0$ such that

 $I_{\lambda}(z) \geq \alpha_{\lambda} > 0, \quad \forall z \in Z \text{ with } \|u\| = \rho_{\lambda}.$

Below the spectrum Inside a gap

Palais-Smale condition

Proposition

For $\lambda \in]-\infty, 0] \setminus \sigma(-\Delta + v)$ kept fixed, the energy I_{λ} satisfies the Palais-Smale condition.

- For $\lambda < \lambda_1$, this is well-known.
- For λ inside the gaps, this is not quite elementary.
- We could not prove the Palais-Smale condition when $\lambda < 0$ is an eigenvalue.

Outline

Definiteness— Indefiniteness
Below the spectrum
Inside a gap

3 The case where $\lambda < \lambda_1$

4) The case where λ is in a gap

The circle \mathscr{B} and the set \mathscr{A}_m

•
$$\mathscr{B} := \{ z \in H \mid ||z|| = \rho_{\lambda} \};$$

• F_m a *m*-dimensional subspace of H, m = 1, 2, 3, ... Then

Proposition

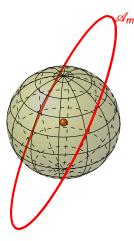
 $\exists \boldsymbol{R} > \rho_{\lambda}$ with

$$I_{\lambda}(u) \leq 0, \quad \forall u \in F_m \text{ with } ||u|| = R.$$

• $\mathscr{A}_m := \{ u \in H \mid 0 < \|u\| < R \}$ and

$$\partial \mathscr{A}_m := \{\mathbf{0}\} \cup \{u \in H \mid \|u\| = R\}.$$

Odd linking



Proposition

 $\gamma(\mathscr{A}_m) \cap \mathscr{B} \text{ is of genus} \geq m, \forall \gamma \in \Gamma_m, \text{ where } \Gamma_m \text{ is the set of all}$

イロト イ団ト イヨト イヨト

• (odd) homeomorphisms $\gamma: H \rightarrow H$

• with
$$\gamma(u) = u, \forall u \in \partial \mathscr{A}_m$$
.

Critical levels

By the deformation lemma, we get

Proposition

For m = 1, 2, 3, . . .,

$$d_{m,0}(\lambda) := \inf_{\gamma \in \Gamma_m} \max_{u \in \mathscr{A}_m} I_{\lambda}(\gamma(u))$$

is a critical level of the energy I_{λ} with

 $\mathbf{0} < \alpha_{\lambda} \leq d_{1,0}(\lambda) \leq d_{2,0}(\lambda) \leq d_{3,0}(\lambda) \leq \cdots$

Critical levels, but missing multiplicity

Remark

Since $d_{1,0}(\lambda) = d_{2,0}(\lambda) = d_{3,0}(\lambda) = \cdots$ is possible, we can say nothing about multiplicity

First way-out

Show that $\lim_{m\to\infty} d_{m,0}(\lambda) = \infty$.

This approach is not suitable for multiple bifurcation since such an analysis is based on

$$\lim_{\lambda\nearrow\lambda_1}d_{m,0}(\lambda)=0$$

for some *m*. This is not important for the first eigenvalue, since this one is simple, but it will be important later on.

< ロ > < 同 > < 回 > < 回 >

Critical levels, but still missing multiplicity

Remark

Since $d_{1,0}(\lambda) = d_{2,0}(\lambda) = d_{3,0}(\lambda) = \cdots$ is possible, we can say nothing about multiplicity

Better way-out

Use the approach of Amborsetti-Rabinowitz This approach will no longer be possible when dim $Y = \infty$.

イロト イヨト イヨト

My way-out

Put

- $G_0 := \{ \varnothing \}$
- $G_j = \{U \in H \mid U = -U, U \text{ open}, 0 \notin \overline{U}, U \text{ of genus } \leq j\}, j=1,2,3,\ldots, m-1.$

By the deformation lemma again,

Proposition

For j = 0, 1, ..., m - 1 the values

$$d_{m,j}(\lambda) := \inf_{\gamma \in \Gamma_m, U \in \mathcal{G}_j} \max_{u \in \mathscr{A}_m \setminus U} I_\lambda(\gamma(u))$$

is a critical value of the energy I_λ with

$$0 < \alpha_{\lambda} \leq d_{m,m-1}(\lambda) \leq d_{m,m-2}(\lambda) \leq \cdots \leq \underbrace{d_{m,0}(\lambda)}_{=c_m(\lambda)}.$$

My way-out

Proposition

If any of these levels coincide, then there is an infinite number of critical points of I_{λ} that correspond to this specific level.

Remark

In fact, we have the usual multiplicity: If 3 of these value coincide, the corresponding set of critical points is of genus \geq 3, a.s.o.

< ロ ト < 同 ト < 三 ト < 三 ト

My way-out

- This approach is well suited for the analysis of multiple bifurcations (see later);
- This approach can be used even when dim $Y = \infty$.

< ロ > < 同 > < 回 > < 回 >

Bifurcation at λ_1

- Choose F₁ := span{w₁}, where w₁ is an eigenfunction corresponding to the eigenvalue λ₁.
- Compute, for $\lambda < \lambda_1$,

$$\max_{u\in\mathscr{A}_1}I_{\lambda}(u)$$

and get $d_{1,0}(\lambda) \leq \operatorname{const} \cdot (\lambda - \lambda_1)^{1 + \sigma/2}$.

Using the monotone dependence of *d*_{1,0}(λ) on λ to get *L*²-bifurcation:

$$\lim_{\lambda\nearrow\lambda_1}|u_{1,\lambda}|_{L^2}=0.$$

Outline

2 Definiteness— Indefiniteness
• Below the spectrum
• Inside a gap

3 The case where $\lambda < \lambda_1$

4 The case where λ is in a gap

The circle \mathscr{B} and the set \mathscr{A}_m

•
$$\mathscr{B} := \{ z \in \mathbb{Z} \mid ||z|| = \rho_{\lambda} \};$$

• E_m a *m*-dimensional subspace of H, m = 1, 2, 3, ... and put $F_m := Y \oplus E_m$. Then

Proposition

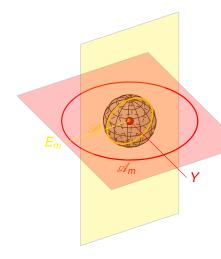
 $\exists \boldsymbol{R} > \rho_{\lambda}$ with

$$I_{\lambda}(u) \leq 0, \quad \forall u \in F_m \text{ with } ||u|| = R.$$

•
$$\mathscr{A}_m := \{ u \in F_m \mid 0 < \|u\| < R \}$$
 and

$$\partial \mathscr{A}_m := \{\mathbf{0}\} \cup \{u \in F_m \mid \|u\| = R\}.$$

Odd linking



Proposition

 $\gamma(\mathscr{A}_m) \cap \mathscr{B} \text{ is of genus} \geq m, \forall \gamma \in \Gamma_m,$ where Γ_m is the set of all

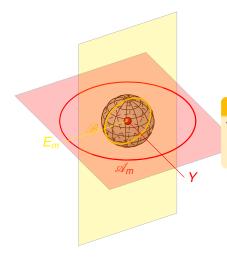
• odd homeomorphisms $\gamma: H \to H$

• with
$$\gamma(u) = u$$
, $\forall u \in \partial \mathscr{A}_m$.

On can replace odd by $\gamma(u) = u$ whenever $I_{\lambda}(u) \le 0$ if one is interested in the existence of only one solution (at least).

< ロ > < 同 > < 回 > < 回 >

Odd linking



Proposition $\forall \gamma \in \Gamma_m,$ $\gamma(\mathscr{A}_m) \cap \mathscr{B} \text{ is of genus } \geq \dim E_m = m$

We can now proceed as for $\lambda < \lambda_1 !!!$

Critical levels

By the deformation lemma, we get

Proposition

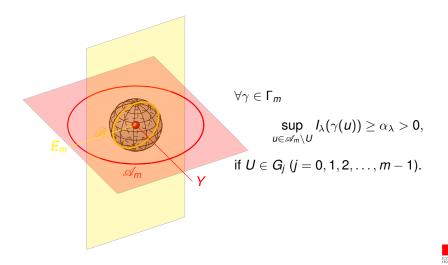
For $m = 1, 2, 3, \ldots$,

$$d_{m,0}(\lambda) := \inf_{\gamma \in \Gamma_m} \max_{u \in \mathscr{A}_m} I_{\lambda}(\gamma(u))$$

is a critical level of the energy I_{λ} with

 $\mathbf{0} < \alpha_{\lambda} \leq d_{1,0}(\lambda) \leq d_{2,0}(\lambda) \leq d_{3,0}(\lambda) \leq \cdots$

In order to get multiplicity



My way-out

Put

- $G_0 := \{ \varnothing \}$
- $G_j = \{U \in H \mid U = -U, U \text{ open}, 0 \notin \overline{U}, U \text{ of genus } \leq j\}, j=1,2,3,\ldots, m-1.$

By the deformation lemma again,

Proposition

For j = 0, 1, ..., m - 1 the values

$$d_{m,j}(\lambda) := \inf_{\gamma \in \Gamma_m, U \in \mathcal{G}_j} \max_{u \in \mathscr{A}_m \setminus U} I_\lambda(\gamma(u))$$

is a critical value of the energy I_λ with

$$0 < \alpha_{\lambda} \leq d_{m,m-1}(\lambda) \leq d_{m,m-2}(\lambda) \leq \cdots \leq \underbrace{d_{m,0}(\lambda)}_{=c_m(\lambda)}.$$

Multipicity result

Proposition

If any of these levels coincide, then there is an infinite number of critical points of I_{λ} that correspond to this specific level.

Remark

In fact, we have the usual multiplicity: If 3 of these value coincide, the corresponding set of critical points is of genus \geq 3, a.s.o.

< ロ > < 同 > < 回 > < 回 >

Important remarks

- This approach is well suited for the analysis of multiple bifurcations (see later);
- This approach can be used even when dim $Y = \infty$.

Bifurcation at λ_{i+1}

- Choose *F_m* := span{*w*₁,..., *w_m*}, where *w*₁,... *w_m* are eigenfunctions corresponding to the eigenvalue λ_{i+1}.
- Compute, for $\lambda \in]\lambda_i, \lambda_{i+1}[$,

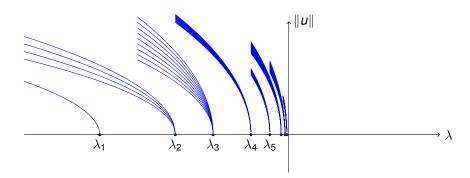
$\max_{u\in\mathscr{A}_m}I_\lambda(u)$

and get $d_{m,0}(\lambda) \leq \operatorname{const} \cdot (\lambda - \lambda_{i+1})^{1+\sigma/2}$.

Using the monotone dependence of *d_{m,0}(λ)* on *λ* to get *L*²-bifurcation of multiplicity *m*:

$$\lim_{\lambda\nearrow\lambda_{i+1}}|u_{j,\lambda}|_{L^2}=0, \qquad j=1,2,\ldots,m.$$

bifurcation diagram



If $\lim_{n\to\infty} \lambda_n = 0$, 0 is a bifurcation point, too!