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A. Porretta p-harmonic functions in the cone



Motivation and setting of the problem

Let CS be a cone in R
N with vertex 0 and opening S ⊂ SN−1,

where S is a smooth subdomain on the sphere.

Pb: Construct positive solutions in CS (vanishing on the lateral
boundary) in the form of separable variables

u(x) = r−αω(σ)

for the p–harmonic equation

u ≥ 0 , −∆pu := −div
(
|Du|p−2Du

)
= 0 in CS \ {0}

or the quasilinear Lane-Emden equation

u ≥ 0 , −∆pu = uq , q > p − 1 .
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Motivation and setting of the problem

Let CS be a cone in R
N with vertex 0 and opening S ⊂ SN−1,

where S is a smooth subdomain on the sphere.

Pb: Construct positive solutions in CS (vanishing on the lateral
boundary) in the form of separable variables

u(x) = r−αω(σ)

for the p–harmonic equation

u ≥ 0 , −∆pu := −div
(
|Du|p−2Du

)
= 0 in CS \ {0}

or the quasilinear Lane-Emden equation

u ≥ 0 , −∆pu = uq , q > p − 1 .

Motivation: study of isolated boundary singularities of solutions of

−∆pv = f (x , v) in Ω,
v = 0 on ∂Ω \ {x0}.
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The p-harmonic case.

Theorem (P. Tolksdorf ’83)

There exists a unique α := αS > 0 and a unique (up to an
homothethy) positive ω ∈ C 1(S̄) ∩ C 2(S) such that u = r−αω(σ)
is p-harmonic in CS (and zero on the lateral boundary).

Similarly, there exists a unique α̃S < 0 such that u = r−αω(σ)
is p-harmonic (the regular solution).

The value of αS appears in Liouville type problems in cones
([Berestycki-Capuzzo Dolcetta-Nirenberg], [Fraas-Pinchover]).

Unfortunately, the explicit value of αS is rarely known.
(Ex: p = 2, S = S+ half sphere, then αS = N − 1)
However, the role of αS is important as that of an eigenvalue.
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The value of αS also plays a crucial role for the Lane-Emden
equation (see [Bidaut Verón-Jazar-Véron]):

A necessary condition for ∃ of sol. u = r−α ω(σ) of

−∆pu = uq in the cone CS

is that α = p
q−(p−1) < αS

Note that this is a condition relating q and S (opening of the
cone): q − (p − 1) > p

αS
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The value of αS also plays a crucial role for the Lane-Emden
equation (see [Bidaut Verón-Jazar-Véron]):

A necessary condition for ∃ of sol. u = r−α ω(σ) of

−∆pu = uq in the cone CS

is that α = p
q−(p−1) < αS

Note that this is a condition relating q and S (opening of the
cone): q − (p − 1) > p

αS

(the condition is also sufficient in dimension N = 2)

(when p = 2 and S = S+ half sphere, optimal sufficient
conditions are given in [Bidaut Verón-Ponce-Véron])
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One can check: u(x) = r−αω(σ) is p-harmonic in the cone CS

(and zero on the lateral boundary) if and only if (α, ω) satisfy







−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α (α(p − 1) + p − N) (α2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

(1)
where ∇ and div are covariant derivative and divergence operator
on SN−1.
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One can check: u(x) = r−αω(σ) is p-harmonic in the cone CS

(and zero on the lateral boundary) if and only if (α, ω) satisfy







−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α (α(p − 1) + p − N) (α2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

(1)
where ∇ and div are covariant derivative and divergence operator
on SN−1.

Tolksdorf’ s result ⇒ ∃ ! of (α, ω) sol. of a quasilinear pb. on the
sphere

Depsite this problem is intrinsic on the sphere, the approach of P.
Tolksdorf uses self-similarity arguments and properties of solutions
of the (euclidean) p-Laplace equation.
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In Tolksdorf’s proof, the existence of (α, ω) is deduced by
constructing a self-similar sol. in the unit cone (u(R x) = Rα u(x))

and defining ω(σ) := u(Rσ)
Rα

. Uniqueness of α, ω is proved next
using Harnack inequalities in the infinite cone (Praghmen-Lindelhof
principle).
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In Tolksdorf’s proof, the existence of (α, ω) is deduced by
constructing a self-similar sol. in the unit cone (u(R x) = Rα u(x))

and defining ω(σ) := u(Rσ)
Rα

. Uniqueness of α, ω is proved next
using Harnack inequalities in the infinite cone (Praghmen-Lindelhof
principle).

Pb: Is there an intrinsic construction of (α, ω) ? Does this problem
have an independent meaning on SN−1?
Note that Note that problem







−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α (α(p − 1) + p − N) (α2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

is a kind of “nonlinear eigenvalue problem”
(invariant by dilations of ω) - but it is not variational (except if
p = 2) !
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When p = 2, the equation

−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)
p−2

2 ω

is exactly an eigenvalue problem

− ∆gω = α(α + 2 − N)ω in S ⊂ SN−1 (2)

where ∆g is the Laplace-Beltrami operator.
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When p = 2, the equation

−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)
p−2

2 ω

is exactly an eigenvalue problem

− ∆gω = α(α + 2 − N)ω in S ⊂ SN−1 (2)

where ∆g is the Laplace-Beltrami operator. Existence of a unique
positive (and a unique negative) α follows from

α(α + 2 − N) = λ1,S

when λ1,S is the first eigenvalue on S .
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When p = 2, the equation

−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)
p−2

2 ω

is exactly an eigenvalue problem

− ∆gω = α(α + 2 − N)ω in S ⊂ SN−1 (2)

where ∆g is the Laplace-Beltrami operator. Existence of a unique
positive (and a unique negative) α follows from

α(α + 2 − N) = λ1,S

when λ1,S is the first eigenvalue on S .

Note in the case p = 2:
• ω is precisely an eigenfunction
• α is not precisely an eigenvalue, but is obtained in terms of λ1

(α solves an equation F (α, λ1) = 0)
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∃ of sol. u(x) = r−αω(σ) −→ eigenvalue-type problems in SN−1.

What if p 6= 2? Key point: set

v = −
1

α
lnω

Then the equation

−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)
p−2

2 ω

is transformed into

−div

(
(
1 + |∇v |2

) p−2
2 ∇v

)

+ α(p − 1)
(
1 + |∇v |2

) p−2
2 |∇v |2

= − (α(p − 1) + p − N)
(
1 + |∇v |2

) p−2
2 in S
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∃ of sol. u(x) = r−αω(σ) −→ eigenvalue-type problems in SN−1.

What if p 6= 2? Key point: set

v = −
1

α
lnω

Then the equation

−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)
p−2

2 ω

is transformed into

−div

(
(
1 + |∇v |2

) p−2
2 ∇v

)

+ α(p − 1)
(
1 + |∇v |2

) p−2
2 |∇v |2

= − (α(p − 1) + p − N)
(
1 + |∇v |2

) p−2
2 in S

Divide by
(
1 + |∇v |2

) p−2
2 .....
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We see that v = − 1
α lnω solves

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = − (α(p − 1) + p − N)
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We see that v = − 1
α lnω solves

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = − (α(p − 1) + p − N)

In the equation of v , the case p = 2 and p 6= 2 are very similar

The number (α(p − 1) + p − N) has a role of “ergodic
constant”: given any α > 0, is there some (unique?) λα:

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = −λα

has a solution v ?
Important: with the boundary condition v → +∞ on ∂S !
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We see that v = − 1
α lnω solves

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = − (α(p − 1) + p − N)

In the equation of v , the case p = 2 and p 6= 2 are very similar

The number (α(p − 1) + p − N) has a role of “ergodic
constant”: given any α > 0, is there some (unique?) λα:

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = −λα

has a solution v ?
Important: with the boundary condition v → +∞ on ∂S !

Recall that ω = e−αv and u = r−αω is p-harmonic iff
λα = (α(p − 1) + p − N).
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The heart of our construction is the following

Theorem (P-V)

Let S ⊂ SN−1 be a smooth bounded open subdomain. Then for
any α > 0 there exists a unique λα > 0 such that the problem

{

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = −λα

v(σ) → +∞ as σ → ∂S

admits a solution v ∈ C 2(S), and v is unique up to an additive
constant.

Furthermore, the map α 7→ λα is continuous, decreasing and
λα → ∞ as α → 0+.
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The heart of our construction is the following

Theorem (P-V)

Let S ⊂ SN−1 be a smooth bounded open subdomain. Then for
any α > 0 there exists a unique λα > 0 such that the problem

{

−∆gv − (p − 2)D2v∇v ·∇v
1+|∇v |2

+ α(p − 1)|∇v |2 = −λα

v(σ) → +∞ as σ → ∂S

admits a solution v ∈ C 2(S), and v is unique up to an additive
constant.

Furthermore, the map α 7→ λα is continuous, decreasing and
λα → ∞ as α → 0+.

This result has an intrinsic independent interest:

• Our proof applies replacing SN−1 with a general
N − 1-dimensional Riemannian manifold (M, g).
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• This result extends [J.M.Lasry-P.L.Lions ’89] (where p = 2 and
S ⊂ R

N). It is new when p 6= 2 even in the euclidean case.

When p = 2, the problem
{

−∆gv + α|∇v |2 = −λα

v(σ) → +∞ as σ → ∂S

is related to a state constraint problem for the Brownian motion.
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• This result extends [J.M.Lasry-P.L.Lions ’89] (where p = 2 and
S ⊂ R

N). It is new when p 6= 2 even in the euclidean case.

When p = 2, the problem
{

−∆gv + α|∇v |2 = −λα

v(σ) → +∞ as σ → ∂S

is related to a state constraint problem for the Brownian motion.

This is a classical connection (through logarithmic tranform)
between the first eigenvalue and the ergodic constant of
stochastic control problems
{

−∆u = λ1 u in Ω

u = 0 on ∂Ω

v=− ln u
↔

{

−∆v + |∇v |2 = −λ1 in Ω

v → +∞ on ∂Ω

So-called stochastic control interpretation of the first eigenvalue
[C.J. Holland ’77, J.M. Lasry-P.L.Lions ’89]

(see also Donsker-Varadhan, W.H. Fleming-McEneaney ’95, W. H.
Fleming-S.J. Sheu ’97, ....)
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As a Corollary, we deduce Tolksdorf’s result.Recall

v = −
1

α
lnω ↔ ω = e−α v

We proved that, for any given α > 0, there exists a unique λα > 0:







−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

= αλα(α2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

Somehow, for any α the role of “eigenvalue” is played by λα.
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As a Corollary, we deduce Tolksdorf’s result.Recall

v = −
1

α
lnω ↔ ω = e−α v

We proved that, for any given α > 0, there exists a unique λα > 0:







−div
(

(α2ω2 + |∇ω|2)
p−2

2 ∇ω
)

= αλα(α2ω2 + |∇ω|2)
p−2

2 ω

ω = 0 on ∂S

Somehow, for any α the role of “eigenvalue” is played by λα.

Tolksdorf’s problem becomes:

u(x) = r−αω(σ) is p-harmonic in the cone

if and only if λα = α(p − 1) + p − N

But α 7→ λα is continuous, decreasing and unbounded....
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Therefore, the mapping

ϕ(α) := λα − α(p − 1)

is continuous, decreasing and such that ϕ(0) = +∞,
ϕ(+∞) = −∞.
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Therefore, the mapping

ϕ(α) := λα − α(p − 1)

is continuous, decreasing and such that ϕ(0) = +∞,
ϕ(+∞) = −∞.

By continuity, the equation

λα − α(p − 1) = Y

has a unique sol. for every Y .

When Y = p − N we get the unique α = αS > 0 which makes
u = r−αω p-harmonic in the cone.
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Therefore, the mapping

ϕ(α) := λα − α(p − 1)

is continuous, decreasing and such that ϕ(0) = +∞,
ϕ(+∞) = −∞.

By continuity, the equation

λα − α(p − 1) = Y

has a unique sol. for every Y .

When Y = p − N we get the unique α = αS > 0 which makes
u = r−αω p-harmonic in the cone.

Rmk: The monotonicity of the map α 7→ λα gives a typical
monotonicity property of eigenvalues:

if S , S ′ ⊂ SN−1, S ⊂ S ′ ⇒ αS ≥ αS ′
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Corollary (P-V)

There exists a unique α > 0 such that

λα = α(p − 1) + p − N (3)

As a consequence, for any subdomain S there exists a unique
αS > 0 and a unique (up to dilation) positive ω ∈ C 1(S) ∩ C 2(S):
u(x) = r−αω(σ) is p-harmonic in the cone CS .
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Corollary (P-V)

There exists a unique α > 0 such that

λα = α(p − 1) + p − N (3)

As a consequence, for any subdomain S there exists a unique
αS > 0 and a unique (up to dilation) positive ω ∈ C 1(S) ∩ C 2(S):
u(x) = r−αω(σ) is p-harmonic in the cone CS .

Remarks:

• As in the case p = 2: ω is an eigenfunction, α is not exactly an
eigenvalue but a solution of an equation F (α, λα) = 0 where λα is
an eigenvalue.

• When p = 2 we have λα = λ1
α and (3) is the algebraic equation

α(α + 2 − N) = λ1,S .
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Ideas of the proof

The proof of this Theorem stands on the following steps:

As is typical for ergodic-type problems, we start from

{

ε vε − ∆gvε − (p − 2)D2vε∇vε·∇vε

1+|∇vε|2
+ α(p − 1)|∇vε|

2 = 0

vε(σ) → +∞ as σ → ∂S

and then we let ε → 0.

What happens in such models is that
- vε has a complete blow-up as ε → 0

On the other hand,

-ε vε remains bounded (locally) by max. principle

-|∇vε| remains locally bounded due to the barrier effect of the
absorption term.
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Therefore we have

ε∇vε → 0 locally uniformly,

hence, up to subsequences,

ε vε converges to a constant λα

If we fix σ0 ∈ S , then, locally uniformly,

vε(·) − vε(σ0) converges to a function v

and v solves

λα − ∆gv − (p − 2)
D2v∇v · ∇v

1 + |∇v |2
+ α(p − 1)|∇v |2 = 0
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Therefore we have

ε∇vε → 0 locally uniformly,

hence, up to subsequences,

ε vε converges to a constant λα

If we fix σ0 ∈ S , then, locally uniformly,

vε(·) − vε(σ0) converges to a function v

and v solves

λα − ∆gv − (p − 2)
D2v∇v · ∇v

1 + |∇v |2
+ α(p − 1)|∇v |2 = 0

with the boundary behaviour v → +∞ on ∂S
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Key technical points:

compactness relies on interior gradient estimates:

For every compact subset S ′ ⊂⊂ S , we have

‖∇vε‖L∞(S ′) ≤
K

dist(S ′,S)

To get the gradient bound, we use the (intrinsic) Weitzenböck
formula

1

2
∆g |∇v |2 = ‖D2v‖2 + ∇(∆gv) · ∇v + Riccg (∇v ,∇v)

and the classical Bernstein’s method

(max. principle applied to |∇v |2)
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Uniqueness of (λα, v)

[Rmk: Uniqueness of (λα, v) implies that the convergence
holds for the whole sequence vε]
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Uniqueness of (λα, v)

[Rmk: Uniqueness of (λα, v) implies that the convergence
holds for the whole sequence vε]

Two main ingredients:

(i) the strong maximum principle

Rmk: A(v) := −∆gv−(p−2)
D2v∇v · ∇v

1 + |∇v |2
is nondegenerate

A(v1) − A(v2) + α
[
|∇v1|

2 − |∇v2|
2
]

= −(λ1
α − λ2

α)

λ1
α 6= λ2

α ⇒ v1 − v2 ≡ const.
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Uniqueness of (λα, v)

[Rmk: Uniqueness of (λα, v) implies that the convergence
holds for the whole sequence vε]

Two main ingredients:

(i) the strong maximum principle

Rmk: A(v) := −∆gv−(p−2)
D2v∇v · ∇v

1 + |∇v |2
is nondegenerate

A(v1) − A(v2) + α
[
|∇v1|

2 − |∇v2|
2
]

= −(λ1
α − λ2

α)

λ1
α 6= λ2

α ⇒ v1 − v2 ≡ const.

⇒







uniqueness of λα

uniqueness (up to an additive constant)

of the boundary blow-up solution v .
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(ii) Detailed estimates on the boundary blow-up of v , ∇v in order
to handle the difference of solutions near the boundary.
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(ii) Detailed estimates on the boundary blow-up of v , ∇v in order
to handle the difference of solutions near the boundary.

In particular, we need precise gradient estimates:

γ1

dist(σ, ∂Σ)
≤ |∇v(σ)| ≤

γ2

dist(σ, ∂Σ)

which we prove using C 1,α estimates up to the boundary for
p-Laplace type equations.
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Properties of the mapping α 7→ λα follow from the construction of
the couple (λα, v) sol. of the ergodic problem

−∆gv − (p − 2)
D2v∇v · ∇v

1 + |∇v |2
+ α(p − 1)|∇v |2 = −λα

one checks that

• α 7→ λα is decreasing (since λα = lim
ε→0

ε vε)

• α 7→ λα is continuous (stability of the ergodic constant
constant is consequence of its uniqueness)

• we have λα → +∞ when α → 0.
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Comments

Our proof of Tolksdorf’s result is not easier. However we
provide an intrinsic interpretation of the unique couple
(αS , ωS) such that u(r , σ) = r−αω(σ) is p-harmonic in the
cone CS , and a new construction of (α, ω) (valid in general
manifolds).

The log -transform reminds of the useful connection between
the first eigenvalue and the ergodic constant of stochastic
control problems

Our approach suggests that in some cases it can be useful to
embed eigenvalue problems into the larger family of ergodic
problems

Our construction can be useful to understand the role of αS in
the Lane-Emden problem.
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The Lane-Emden equation

−∆pu = uq , in the cone CS , with q > p − 1.

A positive (singular) solution u = r−α ω(σ) exists iff (α, ω) satisfy
the quasilinear pb. on the sphere:

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)p/2−1ω + ωq
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The Lane-Emden equation

−∆pu = uq , in the cone CS , with q > p − 1.

A positive (singular) solution u = r−α ω(σ) exists iff (α, ω) satisfy
the quasilinear pb. on the sphere:

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)p/2−1ω + ωq

Recall the necessary conditions: α = p
q−(p−1) and α < αS
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The Lane-Emden equation

−∆pu = uq , in the cone CS , with q > p − 1.

A positive (singular) solution u = r−α ω(σ) exists iff (α, ω) satisfy
the quasilinear pb. on the sphere:

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)p/2−1ω + ωq

Recall the necessary conditions: α = p
q−(p−1) and α < αS

But our construction of αS implies:

α < αS ⇐⇒ (α(p − 1) + p − N) < λα

where λα is the unique “eigenvalue”:

−divg

(

(α2ω2 + |∇ω|2)p/2−1∇ω
)

= αλα(α2ω2 + |∇ω|2)p/2−1ω

A. Porretta p-harmonic functions in the cone



Observe the analogy with the euclidean case:

∃ pos. sol. of − ∆pu = λ up−1 + uq ⇒ λ < λ1(−∆p,Ω)
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Observe the analogy with the euclidean case:

∃ pos. sol. of − ∆pu = λ up−1 + uq ⇒ λ < λ1(−∆p,Ω)

Theorem

Assume that α = p
q−(p−1) < αS .

(i) If q <
(N−1)p
N−1−p

− 1 (critical exponent in dim. N − 1),

then ∃ a sol. of

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(α(p − 1) + p − N)(α2ω2 + |∇ω|2)p/2−1ω + ωq

(hence ∃ a separable sol. of −∆pu = uq in the cone CS).

(ii) If S is “star shaped with respect to the North pole”, then there

is no solution when q = (N−1)p
N−1−p

− 1.
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Ideas of the proof

For the nonexistence part, we use a Pohozaev type identity on
the sphere.
(similar to the case p = 2 in [Bidaut Véron-Ponce-Véron]).
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Ideas of the proof

For the nonexistence part, we use a Pohozaev type identity on
the sphere.
(similar to the case p = 2 in [Bidaut Véron-Ponce-Véron]).

Rmk: we only conclude nonexistence for the critical value
q = (N−1)p

N−1−p
− 1 (if p = 2 nonexistence holds for any q

supercritical)

Pohozaev identity takes the form:
∫

∂S

|ων |
pφνdS = A

∫

S

ωq+1φ dσ

+B

∫

S

γω|∇
′ω|2φ dσ + C

∫

S

γωω2φ dσ,

where γω = (α2ω2 + |∇′ω|2)p−2/2 and A,B ,C depend on
α, q, p,N.
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Ideas of the proof

For the nonexistence part, we use a Pohozaev type identity on
the sphere.
(similar to the case p = 2 in [Bidaut Véron-Ponce-Véron]).

Rmk: we only conclude nonexistence for the critical value
q = (N−1)p

N−1−p
− 1 (if p = 2 nonexistence holds for any q

supercritical)

Pohozaev identity takes the form:
∫

∂S

|ων |
pφνdS = A

∫

S

ωq+1φ dσ

+B

∫

S

γω|∇
′ω|2φ dσ + C

∫

S

γωω2φ dσ,

where γω = (α2ω2 + |∇′ω|2)p−2/2 and A,B ,C depend on
α, q, p,N. Strange miracle:

q critical ⇐⇒ A = B = C = 0
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For the existence part, we use topological degree (as in
[DeFiguereido-Lions-Nussbaum], [Quaas-Sirakov]) and a priori
estimates for p-Laplace Lane-Emden equations ([Serrin-Zou],
[Zou], with similar method as [Gidas-Spruck]).

Recall that we are in a non-variational situation (differently
than the case p = 2, where one uses a Mountain Pass
argument).
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For the existence part, we use topological degree (as in
[DeFiguereido-Lions-Nussbaum], [Quaas-Sirakov]) and a priori
estimates for p-Laplace Lane-Emden equations ([Serrin-Zou],
[Zou], with similar method as [Gidas-Spruck]).

Recall that we are in a non-variational situation (differently
than the case p = 2, where one uses a Mountain Pass
argument).

In the topological degree argument, the role of λα as
eigenvalue is important. Recall: we look for solutions of

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α (α(p − 1) + p − N)
︸ ︷︷ ︸

<λα

(α2ω2 + |∇ω|2)p/2−1ω + ωq

A. Porretta p-harmonic functions in the cone



Roughly speaking, the degree homotopy takes the form

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(cα + t)(α2ω2 + |∇ω|2)p/2−1ω + (ω + t)q

where cα = α(p − 1) + p − N. Recall that we are in the range

α < αS ⇐⇒ cα < λα
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Roughly speaking, the degree homotopy takes the form

−divg

(
(α2ω2 + |∇ω|2)p/2−1∇ω

)
=

= α(cα + t)(α2ω2 + |∇ω|2)p/2−1ω + (ω + t)q

where cα = α(p − 1) + p − N. Recall that we are in the range

α < αS ⇐⇒ cα < λα

- The “eigenvalue”meaning of λα implies
no solution for t small and ω small ⇒ index=1 on Br for small r .

-A priori estimates +no solution for t large ⇒ index=0 on BR for
large R .

Hence, there exists a solution on BR \ Br .
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