Separable solutions of p-Laplace type equations in cones and quasilinear problems on the sphere

Alessio Porretta
Granada, 28/9/2011

A. Porretta \& L. Véron:Separable p-harmonic functions in a cone and related quasilinear equations on manifolds, J. Eur. Math. Soc. '09
A. Porretta \& L. Véron: Separable solutions of quasilinear Lane-Emden equations, preprint.

Motivation and setting of the problem

Let C_{S} be a cone in \mathbb{R}^{N} with vertex 0 and opening $S \subset S^{N-1}$, where S is a smooth subdomain on the sphere.

Pb : Construct positive solutions in C_{S} (vanishing on the lateral boundary) in the form of separable variables

$$
u(x)=r^{-\alpha} \omega(\sigma)
$$

for the p-harmonic equation

$$
u \geq 0, \quad-\Delta_{p} u:=-\operatorname{div}\left(|D u|^{p-2} D u\right)=0 \quad \text { in } C_{S} \backslash\{0\}
$$

or the quasilinear Lane-Emden equation

$$
u \geq 0, \quad-\Delta_{p} u=u^{q}, \quad q>p-1
$$

Motivation and setting of the problem

Let C_{S} be a cone in \mathbb{R}^{N} with vertex 0 and opening $S \subset S^{N-1}$, where S is a smooth subdomain on the sphere.

Pb: Construct positive solutions in C_{S} (vanishing on the lateral boundary) in the form of separable variables

$$
u(x)=r^{-\alpha} \omega(\sigma)
$$

for the p-harmonic equation

$$
u \geq 0, \quad-\Delta_{p} u:=-\operatorname{div}\left(|D u|^{p-2} D u\right)=0 \quad \text { in } C_{S} \backslash\{0\}
$$

or the quasilinear Lane-Emden equation

$$
u \geq 0, \quad-\Delta_{p} u=u^{q}, \quad q>p-1 .
$$

Motivation: study of isolated boundary singularities of solutions of

$$
\begin{array}{cc}
-\Delta_{p} v=f(x, v) & \text { in } \Omega, \\
v=0 & \text { on } \partial \Omega \backslash\left\{x_{0}\right\} .
\end{array}
$$

The p-harmonic case.

Theorem (P. Tolksdorf '83)

There exists a unique $\alpha:=\alpha_{S}>0$ and a unique (up to an homothethy) positive $\omega \in C^{1}(\bar{S}) \cap C^{2}(S)$ such that $u=r^{-\alpha} \omega(\sigma)$ is p-harmonic in C_{S} (and zero on the lateral boundary).

- Similarly, there exists a unique $\tilde{\alpha}_{S}<0$ such that $u=r^{-\alpha} \omega(\sigma)$ is p-harmonic (the regular solution).
- The value of α_{S} appears in Liouville type problems in cones ([Berestycki-Capuzzo Dolcetta-Nirenberg], [Fraas-Pinchover]).
- Unfortunately, the explicit value of α_{S} is rarely known. (Ex: $p=2, S=S_{+}$half sphere, then $\alpha_{S}=N-1$) However, the role of α_{S} is important as that of an eigenvalue.
- The value of α_{S} also plays a crucial role for the Lane-Emden equation (see [Bidaut Verón-Jazar-Véron]):

A necessary condition for \exists of sol. $u=r^{-\alpha} \omega(\sigma)$ of

$$
-\Delta_{p} u=u^{q} \quad \text { in the cone } C_{S}
$$

is that

$$
\alpha=\frac{p}{q-(p-1)}<\alpha_{S}
$$

Note that this is a condition relating q and S (opening of the cone): $q-(p-1)>\frac{p}{\alpha_{S}}$

- The value of α_{S} also plays a crucial role for the Lane-Emden equation (see [Bidaut Verón-Jazar-Véron]):

A necessary condition for \exists of sol. $u=r^{-\alpha} \omega(\sigma)$ of

$$
\begin{aligned}
& -\Delta_{p} u=u^{q} \quad \text { in the cone } C_{S} \\
& \text { is that } \quad \alpha=\frac{p}{q-(p-1)}<\alpha_{S}
\end{aligned}
$$

Note that this is a condition relating q and S (opening of the cone): $q-(p-1)>\frac{p}{\alpha_{S}}$
(the condition is also sufficient in dimension $N=2$)
(when $p=2$ and $S=S_{+}$half sphere, optimal sufficient conditions are given in [Bidaut Verón-Ponce-Véron])

One can check: $u(x)=r^{-\alpha} \omega(\sigma)$ is p-harmonic in the cone C_{S} (and zero on the lateral boundary) if and only if (α, ω) satisfy

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \tag{1}\\
\quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega \\
\omega=0 \quad \text { on } \partial S
\end{array}\right.
$$

where ∇ and div are covariant derivative and divergence operator on S^{N-1}.

One can check: $u(x)=r^{-\alpha} \omega(\sigma)$ is p-harmonic in the cone C_{S} (and zero on the lateral boundary) if and only if (α, ω) satisfy

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \tag{1}\\
\quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega \\
\omega=0 \quad \text { on } \partial S
\end{array}\right.
$$

where ∇ and div are covariant derivative and divergence operator on S^{N-1}.

Tolksdorf' s result $\Rightarrow \exists$! of (α, ω) sol. of a quasilinear pb . on the sphere

Depsite this problem is intrinsic on the sphere, the approach of P. Tolksdorf uses self-similarity arguments and properties of solutions of the (euclidean) p-Laplace equation.

In Tolksdorf's proof, the existence of (α, ω) is deduced by constructing a self-similar sol. in the unit cone $\left(u(R x)=R^{\alpha} u(x)\right)$ and defining $\omega(\sigma):=\frac{\mu(R \sigma)}{R^{\alpha}}$. Uniqueness of α, ω is proved next using Harnack inequalities in the infinite cone (Praghmen-Lindelhof principle).

In Tolksdorf's proof, the existence of (α, ω) is deduced by constructing a self-similar sol. in the unit cone $\left(u(R x)=R^{\alpha} u(x)\right)$ and defining $\omega(\sigma):=\frac{\mu(R \sigma)}{R^{\alpha}}$. Uniqueness of α, ω is proved next using Harnack inequalities in the infinite cone (Praghmen-Lindelhof principle).

Pb : Is there an intrinsic construction of (α, ω) ? Does this problem have an independent meaning on S^{N-1} ?
Note that Note that problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
\quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega \\
\omega=0 \quad \text { on } \partial S
\end{array}\right.
$$

is a kind of "nonlinear eigenvalue problem"
(invariant by dilations of ω) - but it is not variational (except if $p=2$)!

When $p=2$, the equation

$$
\begin{aligned}
& -\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega
\end{aligned}
$$

is exactly an eigenvalue problem

$$
\begin{equation*}
-\Delta_{g} \omega=\alpha(\alpha+2-N) \omega \quad \text { in } S \subset S^{N-1} \tag{2}
\end{equation*}
$$

where Δ_{g} is the Laplace-Beltrami operator.

When $p=2$, the equation

$$
\begin{aligned}
& -\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega
\end{aligned}
$$

is exactly an eigenvalue problem

$$
\begin{equation*}
-\Delta_{g} \omega=\alpha(\alpha+2-N) \omega \quad \text { in } S \subset S^{N-1} \tag{2}
\end{equation*}
$$

where Δ_{g} is the Laplace-Beltrami operator. Existence of a unique positive (and a unique negative) α follows from

$$
\alpha(\alpha+2-N)=\lambda_{1, S}
$$

when $\lambda_{1, S}$ is the first eigenvalue on S.

When $p=2$, the equation

$$
\begin{aligned}
& -\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega
\end{aligned}
$$

is exactly an eigenvalue problem

$$
\begin{equation*}
-\Delta_{g} \omega=\alpha(\alpha+2-N) \omega \quad \text { in } S \subset S^{N-1} \tag{2}
\end{equation*}
$$

where Δ_{g} is the Laplace-Beltrami operator. Existence of a unique positive (and a unique negative) α follows from

$$
\alpha(\alpha+2-N)=\lambda_{1, S}
$$

when $\lambda_{1, S}$ is the first eigenvalue on S.
Note in the case $p=2$:

- ω is precisely an eigenfunction
- α is not precisely an eigenvalue, but is obtained in terms of λ_{1} (α solves an equation $F\left(\alpha, \lambda_{1}\right)=0$)
\exists of sol. $u(x)=r^{-\alpha} \omega(\sigma) \longrightarrow$ eigenvalue-type problems in S^{N-1}.
What if $p \neq 2$? Key point: set

$$
v=-\frac{1}{\alpha} \ln \omega
$$

Then the equation

$$
\begin{aligned}
& -\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega
\end{aligned}
$$

is transformed into

$$
\begin{gathered}
-\operatorname{div}\left(\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}} \nabla v\right)+\alpha(p-1)\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}}|\nabla v|^{2} \\
=-(\alpha(p-1)+p-N)\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}} \quad \text { in } S
\end{gathered}
$$

\exists of sol. $u(x)=r^{-\alpha} \omega(\sigma) \longrightarrow$ eigenvalue-type problems in S^{N-1}.
What if $p \neq 2$? Key point: set

$$
v=-\frac{1}{\alpha} \ln \omega
$$

Then the equation

$$
\begin{aligned}
& -\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega
\end{aligned}
$$

is transformed into

$$
\begin{gathered}
-\operatorname{div}\left(\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}} \nabla v\right)+\alpha(p-1)\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}}|\nabla v|^{2} \\
=-(\alpha(p-1)+p-N)\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}} \quad \text { in } S
\end{gathered}
$$

Divide by $\left(1+|\nabla v|^{2}\right)^{\frac{p-2}{2}} \ldots .$.

We see that $v=-\frac{1}{\alpha} \ln \omega$ solves
$-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-(\alpha(p-1)+p-N)$

We see that $v=-\frac{1}{\alpha} \ln \omega$ solves

$$
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-(\alpha(p-1)+p-N)
$$

- In the equation of v, the case $p=2$ and $p \neq 2$ are very similar
- The number $(\alpha(p-1)+p-N)$ has a role of "ergodic constant" : given any $\alpha>0$, is there some (unique?) λ_{α} :

$$
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-\lambda_{\alpha}
$$

has a solution v ?
Important: with the boundary condition $v \rightarrow+\infty$ on ∂S !

We see that $v=-\frac{1}{\alpha} \ln \omega$ solves

$$
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-(\alpha(p-1)+p-N)
$$

- In the equation of v, the case $p=2$ and $p \neq 2$ are very similar
- The number $(\alpha(p-1)+p-N)$ has a role of "ergodic constant" : given any $\alpha>0$, is there some (unique?) λ_{α} :

$$
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-\lambda_{\alpha}
$$

has a solution v ?
Important: with the boundary condition $v \rightarrow+\infty$ on ∂S !

- Recall that $\omega=e^{-\alpha v}$ and $u=r^{-\alpha} \omega$ is p-harmonic iff $\lambda_{\alpha}=(\alpha(p-1)+p-N)$.

The heart of our construction is the following

Theorem (P-V)

Let $S \subset S^{N-1}$ be a smooth bounded open subdomain. Then for any $\alpha>0$ there exists a unique $\lambda_{\alpha}>0$ such that the problem

$$
\left\{\begin{array}{l}
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-\lambda_{\alpha} \\
v(\sigma) \rightarrow+\infty \quad \text { as } \sigma \rightarrow \partial S
\end{array}\right.
$$

admits a solution $v \in C^{2}(S)$, and v is unique up to an additive constant.
Furthermore, the map $\alpha \mapsto \lambda_{\alpha}$ is continuous, decreasing and $\lambda_{\alpha} \rightarrow \infty$ as $\alpha \rightarrow 0^{+}$.

The heart of our construction is the following

Theorem (P-V)

Let $S \subset S^{N-1}$ be a smooth bounded open subdomain. Then for any $\alpha>0$ there exists a unique $\lambda_{\alpha}>0$ such that the problem

$$
\left\{\begin{array}{l}
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-\lambda_{\alpha} \\
v(\sigma) \rightarrow+\infty \quad \text { as } \sigma \rightarrow \partial S
\end{array}\right.
$$

admits a solution $v \in C^{2}(S)$, and v is unique up to an additive constant.
Furthermore, the map $\alpha \mapsto \lambda_{\alpha}$ is continuous, decreasing and $\lambda_{\alpha} \rightarrow \infty$ as $\alpha \rightarrow 0^{+}$.

This result has an intrinsic independent interest:

- Our proof applies replacing S^{N-1} with a general N - 1-dimensional Riemannian manifold (M, g).
- This result extends [J.M.Lasry-P.L.Lions '89] (where $p=2$ and $S \subset \mathbb{R}^{N}$). It is new when $p \neq 2$ even in the euclidean case.
When $p=2$, the problem

$$
\left\{\begin{array}{l}
-\Delta_{g} v+\alpha|\nabla v|^{2}=-\lambda_{\alpha} \\
v(\sigma) \rightarrow+\infty \quad \text { as } \sigma \rightarrow \partial S
\end{array}\right.
$$

is related to a state constraint problem for the Brownian motion.

- This result extends [J.M.Lasry-P.L.Lions '89] (where $p=2$ and $S \subset \mathbb{R}^{N}$). It is new when $p \neq 2$ even in the euclidean case.
When $p=2$, the problem

$$
\left\{\begin{array}{l}
-\Delta_{g} v+\alpha|\nabla v|^{2}=-\lambda_{\alpha} \\
v(\sigma) \rightarrow+\infty \quad \text { as } \sigma \rightarrow \partial S
\end{array}\right.
$$

is related to a state constraint problem for the Brownian motion.
This is a classical connection (through logarithmic tranform) between the first eigenvalue and the ergodic constant of stochastic control problems
$\left\{\begin{array}{l}-\Delta u=\lambda_{1} u \quad \text { in } \Omega \\ u=0 \quad \text { on } \partial \Omega\end{array} \stackrel{v=-\ln u}{\longleftrightarrow}\left\{\begin{array}{l}-\Delta v+|\nabla v|^{2}=-\lambda_{1} \quad \text { in } \Omega \\ v \rightarrow+\infty \quad \text { on } \partial \Omega\end{array}\right.\right.$
So-called stochastic control interpretation of the first eigenvalue [C.J. Holland '77, J.M. Lasry-P.L.Lions '89] (see also Donsker-Varadhan, W.H. Fleming-McEneaney '95, W. H. Fleming-S.J. Sheu '97,)

As a Corollary, we deduce Tolksdorf's result.Recall

$$
v=-\frac{1}{\alpha} \ln \omega \quad \leftrightarrow \quad \omega=e^{-\alpha v}
$$

We proved that, for any given $\alpha>0$, there exists a unique $\lambda_{\alpha}>0$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)=\alpha \lambda_{\alpha}\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega \\
\omega=0 \text { on } \partial S
\end{array}\right.
$$

Somehow, for any α the role of "eigenvalue" is played by λ_{α}.

As a Corollary, we deduce Tolksdorf's result.Recall

$$
v=-\frac{1}{\alpha} \ln \omega \quad \leftrightarrow \quad \omega=e^{-\alpha v}
$$

We proved that, for any given $\alpha>0$, there exists a unique $\lambda_{\alpha}>0$:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \nabla \omega\right)=\alpha \lambda_{\alpha}\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{\frac{p-2}{2}} \omega \\
\omega=0 \text { on } \partial S
\end{array}\right.
$$

Somehow, for any α the role of "eigenvalue" is played by λ_{α}.
Tolksdorf's problem becomes:

$$
\begin{aligned}
& u(x)=r^{-\alpha} \omega(\sigma) \text { is } p \text {-harmonic in the cone } \\
& \text { if and only if } \lambda_{\alpha}=\alpha(p-1)+p-N
\end{aligned}
$$

But $\alpha \mapsto \lambda_{\alpha}$ is continuous, decreasing and unbounded....

Therefore, the mapping

$$
\varphi(\alpha):=\lambda_{\alpha}-\alpha(p-1)
$$

is continuous, decreasing and such that $\varphi(0)=+\infty$, $\varphi(+\infty)=-\infty$.

Therefore, the mapping

$$
\varphi(\alpha):=\lambda_{\alpha}-\alpha(p-1)
$$

is continuous, decreasing and such that $\varphi(0)=+\infty$, $\varphi(+\infty)=-\infty$.

By continuity, the equation

$$
\lambda_{\alpha}-\alpha(p-1)=Y
$$

has a unique sol. for every Y.
When $Y=p-N$ we get the unique $\alpha=\alpha_{S}>0$ which makes $u=r^{-\alpha} \omega p$-harmonic in the cone.

Therefore, the mapping

$$
\varphi(\alpha):=\lambda_{\alpha}-\alpha(p-1)
$$

is continuous, decreasing and such that $\varphi(0)=+\infty$, $\varphi(+\infty)=-\infty$.

By continuity, the equation

$$
\lambda_{\alpha}-\alpha(p-1)=Y
$$

has a unique sol. for every Y.
When $Y=p-N$ we get the unique $\alpha=\alpha_{S}>0$ which makes $u=r^{-\alpha} \omega p$-harmonic in the cone.

Rmk: The monotonicity of the map $\alpha \mapsto \lambda_{\alpha}$ gives a typical monotonicity property of eigenvalues:

$$
\text { if } S, S^{\prime} \subset S^{N-1}, \quad S \subset S^{\prime} \Rightarrow \alpha_{S} \geq \alpha_{S^{\prime}}
$$

Corollary (P-V)

There exists a unique $\alpha>0$ such that

$$
\begin{equation*}
\lambda_{\alpha}=\alpha(p-1)+p-N \tag{3}
\end{equation*}
$$

As a consequence, for any subdomain S there exists a unique $\alpha_{S}>0$ and a unique (up to dilation) positive $\omega \in C^{1}(\bar{S}) \cap C^{2}(S)$: $u(x)=r^{-\alpha} \omega(\sigma)$ is p-harmonic in the cone C_{S}.

Corollary (P-V)

There exists a unique $\alpha>0$ such that

$$
\begin{equation*}
\lambda_{\alpha}=\alpha(p-1)+p-N \tag{3}
\end{equation*}
$$

As a consequence, for any subdomain S there exists a unique $\alpha_{S}>0$ and a unique (up to dilation) positive $\omega \in C^{1}(\bar{S}) \cap C^{2}(S)$: $u(x)=r^{-\alpha} \omega(\sigma)$ is p-harmonic in the cone C_{S}.

Remarks:

- As in the case $p=2: \omega$ is an eigenfunction, α is not exactly an eigenvalue but a solution of an equation $F\left(\alpha, \lambda_{\alpha}\right)=0$ where λ_{α} is an eigenvalue.
- When $p=2$ we have $\lambda_{\alpha}=\frac{\lambda_{1}}{\alpha}$ and (3) is the algebraic equation $\alpha(\alpha+2-N)=\lambda_{1, S}$.

Ideas of the proof

The proof of this Theorem stands on the following steps:

- As is typical for ergodic-type problems, we start from

$$
\left\{\begin{array}{l}
\varepsilon v_{\varepsilon}-\Delta_{g} v_{\varepsilon}-(p-2) \frac{D^{2} v_{\varepsilon} \nabla v_{\varepsilon} \cdot \nabla v_{\varepsilon}}{1+\left|\nabla v_{\varepsilon}\right|^{2}}+\alpha(p-1)\left|\nabla v_{\varepsilon}\right|^{2}=0 \\
v_{\varepsilon}(\sigma) \rightarrow+\infty \quad \text { as } \sigma \rightarrow \partial S
\end{array}\right.
$$

and then we let $\varepsilon \rightarrow 0$.
What happens in such models is that

- v_{ε} has a complete blow-up as $\varepsilon \rightarrow 0$

On the other hand,
$-\varepsilon v_{\varepsilon}$ remains bounded (locally) by max. principle
$-\left|\nabla v_{\varepsilon}\right|$ remains locally bounded due to the barrier effect of the absorption term.

Therefore we have

$$
\varepsilon \nabla v_{\varepsilon} \rightarrow 0 \quad \text { locally uniformly, }
$$

hence, up to subsequences,

$$
\varepsilon v_{\varepsilon} \text { converges to a constant } \lambda_{\alpha}
$$

If we fix $\sigma_{0} \in S$, then, locally uniformly,

$$
v_{\varepsilon}(\cdot)-v_{\varepsilon}\left(\sigma_{0}\right) \text { converges to a function } v
$$

and v solves

$$
\lambda_{\alpha}-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=0
$$

Therefore we have

$$
\varepsilon \nabla v_{\varepsilon} \rightarrow 0 \quad \text { locally uniformly, }
$$

hence, up to subsequences,

$$
\varepsilon v_{\varepsilon} \text { converges to a constant } \lambda_{\alpha}
$$

If we fix $\sigma_{0} \in S$, then, locally uniformly,

$$
v_{\varepsilon}(\cdot)-v_{\varepsilon}\left(\sigma_{0}\right) \text { converges to a function } v
$$

and v solves

$$
\lambda_{\alpha}-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=0
$$

with the boundary behaviour $v \rightarrow+\infty$ on ∂S

Key technical points:

- compactness relies on interior gradient estimates:

For every compact subset $S^{\prime} \subset \subset S$, we have

$$
\left\|\nabla v_{\varepsilon}\right\|_{L^{\infty}\left(S^{\prime}\right)} \leq \frac{K}{\operatorname{dist}\left(S^{\prime}, S\right)}
$$

To get the gradient bound, we use the (intrinsic) Weitzenböck formula

$$
\frac{1}{2} \Delta_{g}|\nabla v|^{2}=\left\|D^{2} v\right\|^{2}+\nabla\left(\Delta_{g} v\right) \cdot \nabla v+\operatorname{Ricc}_{g}(\nabla v, \nabla v)
$$

and the classical Bernstein's method
(max. principle applied to $|\nabla v|^{2}$)

- Uniqueness of $\left(\lambda_{\alpha}, v\right)$
[Rmk: Uniqueness of $\left(\lambda_{\alpha}, v\right)$ implies that the convergence holds for the whole sequence v_{ε}]
- Uniqueness of $\left(\lambda_{\alpha}, v\right)$
[Rmk: Uniqueness of $\left(\lambda_{\alpha}, v\right)$ implies that the convergence holds for the whole sequence v_{ε}]

Two main ingredients:
(i) the strong maximum principle

Rmk: $A(v):=-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}} \quad$ is nondegenerate

$$
\begin{gathered}
A\left(v_{1}\right)-A\left(v_{2}\right)+\alpha\left[\left|\nabla v_{1}\right|^{2}-\left|\nabla v_{2}\right|^{2}\right]=-\left(\lambda_{\alpha}^{1}-\lambda_{\alpha}^{2}\right) \\
\lambda_{\alpha}^{1} \neq \lambda_{\alpha}^{2} \quad \Rightarrow \quad v_{1}-v_{2} \equiv \text { const. }
\end{gathered}
$$

- Uniqueness of $\left(\lambda_{\alpha}, v\right)$
[Rmk: Uniqueness of $\left(\lambda_{\alpha}, v\right)$ implies that the convergence holds for the whole sequence v_{ε}]

Two main ingredients:
(i) the strong maximum principle

Rmk: $A(v):=-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}} \quad$ is nondegenerate

$$
\begin{gathered}
A\left(v_{1}\right)-A\left(v_{2}\right)+\alpha\left[\left|\nabla v_{1}\right|^{2}-\left|\nabla v_{2}\right|^{2}\right]=-\left(\lambda_{\alpha}^{1}-\lambda_{\alpha}^{2}\right) \\
\lambda_{\alpha}^{1} \neq \lambda_{\alpha}^{2} \quad \Rightarrow \quad v_{1}-v_{2} \equiv \text { const. }
\end{gathered}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\text { uniqueness of } \lambda_{\alpha} \\
\text { uniqueness (up to an additive constant) } \\
\text { of the boundary blow-up solution } v .
\end{array}\right.
$$

(ii) Detailed estimates on the boundary blow-up of $v, \nabla v$ in order to handle the difference of solutions near the boundary.
(ii) Detailed estimates on the boundary blow-up of $v, \nabla v$ in order to handle the difference of solutions near the boundary.

In particular, we need precise gradient estimates:

$$
\frac{\gamma_{1}}{\operatorname{dist}(\sigma, \partial \Sigma)} \leq|\nabla v(\sigma)| \leq \frac{\gamma_{2}}{\operatorname{dist}(\sigma, \partial \Sigma)}
$$

which we prove using $C^{1, \alpha}$ estimates up to the boundary for p-Laplace type equations.

Properties of the mapping $\alpha \mapsto \lambda_{\alpha}$ follow from the construction of the couple $\left(\lambda_{\alpha}, v\right)$ sol. of the ergodic problem

$$
-\Delta_{g} v-(p-2) \frac{D^{2} v \nabla v \cdot \nabla v}{1+|\nabla v|^{2}}+\alpha(p-1)|\nabla v|^{2}=-\lambda_{\alpha}
$$

one checks that

- $\alpha \mapsto \lambda_{\alpha}$ is decreasing (since $\lambda_{\alpha}=\lim _{\varepsilon \rightarrow 0} \varepsilon v_{\varepsilon}$)
- $\quad \alpha \mapsto \lambda_{\alpha}$ is continuous (stability of the ergodic constant constant is consequence of its uniqueness)
- we have $\lambda_{\alpha} \rightarrow+\infty$ when $\alpha \rightarrow 0$.

Comments

- Our proof of Tolksdorf's result is not easier. However we provide an intrinsic interpretation of the unique couple $\left(\alpha_{S}, \omega_{S}\right)$ such that $u(r, \sigma)=r^{-\alpha} \omega(\sigma)$ is p-harmonic in the cone C_{S}, and a new construction of (α, ω) (valid in general manifolds).
- The log-transform reminds of the useful connection between the first eigenvalue and the ergodic constant of stochastic control problems

Our approach suggests that in some cases it can be useful to embed eigenvalue problems into the larger family of ergodic problems

- Our construction can be useful to understand the role of α_{S} in the Lane-Emden problem.

The Lane-Emden equation
$-\Delta_{p} u=u^{q}, \quad$ in the cone C_{S}, with $q>p-1$.
A positive (singular) solution $u=r^{-\alpha} \omega(\sigma)$ exists iff (α, ω) satisfy the quasilinear pb . on the sphere:

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+\omega^{q}
\end{aligned}
$$

The Lane-Emden equation
$-\Delta_{p} u=u^{q}, \quad$ in the cone C_{S}, with $q>p-1$.
A positive (singular) solution $u=r^{-\alpha} \omega(\sigma)$ exists iff (α, ω) satisfy the quasilinear pb . on the sphere:

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+\omega^{q}
\end{aligned}
$$

Recall the necessary conditions: $\alpha=\frac{p}{q-(p-1)}$ and $\alpha<\alpha_{S}$

The Lane-Emden equation

$-\Delta_{p} u=u^{q}, \quad$ in the cone C_{S}, with $q>p-1$.
A positive (singular) solution $u=r^{-\alpha} \omega(\sigma)$ exists iff (α, ω) satisfy the quasilinear pb . on the sphere:

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+\omega^{q}
\end{aligned}
$$

Recall the necessary conditions: $\alpha=\frac{p}{q-(p-1)}$ and $\alpha<\alpha_{S}$
But our construction of α_{S} implies:

$$
\alpha<\alpha_{S} \quad \Longleftrightarrow \quad(\alpha(p-1)+p-N)<\lambda_{\alpha}
$$

where λ_{α} is the unique "eigenvalue":

$$
-\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)=\alpha \lambda_{\alpha}\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega
$$

Observe the analogy with the euclidean case:
\exists pos. sol. of $\quad-\Delta_{p} u=\lambda u^{p-1}+u^{q} \quad \Rightarrow \quad \lambda<\lambda_{1}\left(-\Delta_{p}, \Omega\right)$

Observe the analogy with the euclidean case:
\exists pos. sol. of $\quad-\Delta_{p} u=\lambda u^{p-1}+u^{q} \quad \Rightarrow \quad \lambda<\lambda_{1}\left(-\Delta_{p}, \Omega\right)$

Theorem

Assume that $\alpha=\frac{p}{q-(p-1)}<\alpha_{S}$.
(i) If $q<\frac{(N-1) p}{N-1-p}-1$ (critical exponent in $\operatorname{dim} . N-1$), then \exists a sol. of

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha(\alpha(p-1)+p-N)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+\omega^{q}
\end{aligned}
$$

(hence \exists a separable sol. of $-\Delta_{p} u=u^{q}$ in the cone C_{S}).
(ii) If S is "star shaped with respect to the North pole", then there is no solution when $q=\frac{(N-1) p}{N-1-p}-1$.

Ideas of the proof

- For the nonexistence part, we use a Pohozaev type identity on the sphere.
(similar to the case $p=2$ in [Bidaut Véron-Ponce-Véron]).

Ideas of the proof

- For the nonexistence part, we use a Pohozaev type identity on the sphere.
(similar to the case $p=2$ in [Bidaut Véron-Ponce-Véron]).
Rmk: we only conclude nonexistence for the critical value $q=\frac{(N-1) p}{N-1-p}-1$ (if $p=2$ nonexistence holds for any q supercritical)
Pohozaev identity takes the form:

$$
\begin{gathered}
\int_{\partial S}\left|\omega_{\nu}\right|^{p} \phi_{\nu} d S=A \int_{S} \omega^{q+1} \phi d \sigma \\
+B \int_{S} \gamma_{\omega}\left|\nabla^{\prime} \omega\right|^{2} \phi d \sigma+C \int_{S} \gamma_{\omega} \omega^{2} \phi d \sigma \\
\text { where } \gamma_{\omega}=\left(\alpha^{2} \omega^{2}+\left|\nabla^{\prime} \omega\right|^{2}\right)^{p-2 / 2} \text { and } A, B, C \text { depend on } \\
\alpha, q, p, N .
\end{gathered}
$$

Ideas of the proof

- For the nonexistence part, we use a Pohozaev type identity on the sphere.
(similar to the case $p=2$ in [Bidaut Véron-Ponce-Véron]).
Rmk: we only conclude nonexistence for the critical value $q=\frac{(N-1) p}{N-1-p}-1$ (if $p=2$ nonexistence holds for any q supercritical)
Pohozaev identity takes the form:

$$
\begin{gathered}
\int_{\partial S}\left|\omega_{\nu}\right|^{p} \phi_{\nu} d S=A \int_{S} \omega^{q+1} \phi d \sigma \\
+B \int_{S} \gamma_{\omega}\left|\nabla^{\prime} \omega\right|^{2} \phi d \sigma+C \int_{S} \gamma_{\omega} \omega^{2} \phi d \sigma
\end{gathered}
$$

where $\gamma_{\omega}=\left(\alpha^{2} \omega^{2}+\left|\nabla^{\prime} \omega\right|^{2}\right)^{p-2 / 2}$ and A, B, C depend on α, q, p, N. Strange miracle:

$$
q \text { critical } \Longleftrightarrow A=B=C=0
$$

- For the existence part, we use topological degree (as in [DeFiguereido-Lions-Nussbaum], [Quaas-Sirakov]) and a priori estimates for p-Laplace Lane-Emden equations ([Serrin-Zou], [Zou], with similar method as [Gidas-Spruck]).
Recall that we are in a non-variational situation (differently than the case $p=2$, where one uses a Mountain Pass argument).
- For the existence part, we use topological degree (as in [DeFiguereido-Lions-Nussbaum], [Quaas-Sirakov]) and a priori estimates for p-Laplace Lane-Emden equations ([Serrin-Zou], [Zou], with similar method as [Gidas-Spruck]).
Recall that we are in a non-variational situation (differently than the case $p=2$, where one uses a Mountain Pass argument).

In the topological degree argument, the role of λ_{α} as eigenvalue is important. Recall: we look for solutions of

$$
\begin{aligned}
&-\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha \underbrace{(\alpha(p-1)+p-N)}_{<\lambda_{\alpha}}\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+\omega^{q}
\end{aligned}
$$

Roughly speaking, the degree homotopy takes the form

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha\left(c_{\alpha}+t\right)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+(\omega+t)^{q}
\end{aligned}
$$

where $c_{\alpha}=\alpha(p-1)+p-N$. Recall that we are in the range

$$
\alpha<\alpha_{S} \Longleftrightarrow c_{\alpha}<\lambda_{\alpha}
$$

Roughly speaking, the degree homotopy takes the form

$$
\begin{aligned}
& -\operatorname{div}_{g}\left(\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \nabla \omega\right)= \\
& \quad=\alpha\left(c_{\alpha}+t\right)\left(\alpha^{2} \omega^{2}+|\nabla \omega|^{2}\right)^{p / 2-1} \omega+(\omega+t)^{q}
\end{aligned}
$$

where $c_{\alpha}=\alpha(p-1)+p-N$. Recall that we are in the range

$$
\alpha<\alpha_{S} \Longleftrightarrow c_{\alpha}<\lambda_{\alpha}
$$

- The "eigenvalue" meaning of λ_{α} implies
no solution for t small and ω small \Rightarrow index $=1$ on B_{r} for small r.
-A priori estimates + no solution for t large \Rightarrow index $=0$ on B_{R} for large R.

Hence, there exists a solution on $B_{R} \backslash B_{r}$.

