
SEMILINEAR ELLIPTIC EQUATIONS WITH
SINGULAR NONLINEARITIES

LUCIO BOCCARDO

(joint paper with L. Orsina - Calc. Var.)
(Granada, 14.9.2009)

We study existence and nonexistence of solutions for the following
semilinear elliptic problem with a singular nonlinearity:

(0.1)


−div(M(x)∇u) =

f(x)

uγ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded open subset of RN , N ≥ 2, γ > 0 is a real number,
f is either a nonnegative function belonging to some Lebesgue space,
or a nonnegative bounded Radon measure, and M is a bounded elliptic
matrix; i.e., there exist 0 < α ≤ β such that

(0.2) α |ξ|2 ≤M(x)ξ · ξ , |M(x)| ≤ β ,

for every ξ in RN , for almost every x in Ω. A solution of (0.1) is a
function u in W 1,1

0 (Ω) such that

(0.3) ∀ω ⊂⊂ Ω ∃cω : u ≥ cω > 0 in ω,

and such that

(0.4)

∫
Ω

M(x)∇u · ∇ϕ =

∫
Ω

f ϕ

uγ
∀ϕ ∈ C1

0(Ω) .

Note that the right hand side is well defined by (0.3) since ϕ has com-
pact support.

Problem (0.1) is strongly connected to the quasilinear singular prob-
lem (studied by D. Arcoya and co., L. Boccardo, P. Martinez)

(0.5)


−∆u+ A

|∇u|2

u
= h(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,
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with 0 < A < 1, and h a nonnegative function. Indeed, if we define
v = u1−A, and formally perform a change of variable, then v is a
solution of problem (0.1) with f(x) = (1 − A)h(x), γ = A

1−A , and M
the identity matrix.

We will prove some existence and regularity results for problem (0.1),
depending on γ (more precisely, the cases γ = 1, γ > 1 and γ < 1
will be studied separately, the first having some features in common
with the second and the third), and on the summability of f . If f
is a bounded Radon measure, we will prove nonexistence results; for
example, we will prove that no solution exists if f = δx0 , the Dirac
mass concentrated at x0 in Ω, for every γ > 0.

Let f be a nonnegative measurable function (not identically zero),
let n ∈ N, let fn(x) = min(f(x), n) and consider the following problem:

(0.6)

−div(M(x)∇un) =
fn

(un + 1
n
)γ

in Ω,

un = 0 on ∂Ω.

Lemma 0.1. The sequence un is increasing with respect to n, un > 0
in Ω, and for every ω ⊂⊂ Ω there exists cω > 0 (independent on n)
such that

(0.7) un(x) ≥ cω > 0 for every x in ω, for every n in N.

Remark 0.2. If un and vn are two solutions of (0.6), repeating the
argument of the first part of the proof of Lemma 0.1 shows that un ≤ vn.
By symmetry, this implies that the solution of (0.6) is unique.

If γ < 1, an a priori estimates on un in H1
0 (Ω) can be obtained only

if f is more regular than L1(Ω).

Theorem 0.3. Let γ < 1 and let f be a nonnegative (not identically

zero) function in Lm(Ω), with m = 2N
N+2+γ(N−2)

=
(

2∗

1−γ

)′
. Then there

exists a solution u in H1
0 (Ω) of (0.1).

Remark 0.4. In [BO-Houston] the authors studied the problem

−div(M(x)∇u) = ρ(x)uθ ,

with ρ a nonnegative function in Lm(Ω), and 0 < θ < 1, proving

existence of solutions in H1
0 (Ω) if m ≥

(
2∗

1+θ

)′
. The previous theorems

allow us to extend that result to −1 < θ < 1.

Remark 0.5. If the matrix M(x) is symmetric, and if f belongs to

Lm(Ω), with m >
(

2∗

1−γ

)′
, the solution of (0.1) given by Theorem 0.3 is
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the minimum of the functional

J(v) =
1

2

∫
Ω

M(x)∇v · ∇v − 1

1− γ

∫
Ω

f v1−γ , v ∈ H1
0 (Ω) ,

which is well defined since γ < 1. Indeed, if we consider the functional

Jn(v) =
1

2

∫
Ω

M(x)∇v · ∇v − 1

1− γ

∫
Ω

fn

(
v+ +

1

n

)1−γ
, v ∈ H1

0 (Ω) ,

with fn = min(f(x), n), then there exists a minimum un of Jn. From
the inequality Jn(un) ≤ Jn(u+

n ) one can prove that un ≥ 0, so that un
is a solution of the Euler equation for Jn, i.e., of (0.6). Therefore, by
Lemma 0.1 and Remark 0.2, un is unique and increasing in n, satisfies
(0.7) and, from the inequality J(un) ≤ Jn(0) ≤ C, it is bounded in
H1

0 (Ω) (with the same proof of Theorem ??). If u is the limit of un,
letting n tend to infinity in the inequalities Jn(un) ≤ Jn(v), one finds
that J(u) ≤ J(v), so that u is a minimum of J , and u is a solution of
(0.1) (by Theorem 0.3). Since u satisfies (0.7), equation (0.1) can be
seen as the Euler equation for J ; note that J is not differentiable on
H1

0 (Ω).

If m <
(

2∗

1−γ

)′
, we no longer have solutions in H1

0 (Ω), but in a larger

Sobolev space (which depends on m).

Theorem 0.6. Let γ < 1, and let f belong to Lm(Ω), 1 ≤ m <
2N

N+2+γ(N−2)
. Then there exists a solution u of (0.1), with u in W 1,q

0 (Ω),

q = Nm(γ+1)
N−m(1−γ)

.

Theorem 0.7. Let γ = 1 and let f be a nonnegative function in L1(Ω)
(not identically zero). Then there exists a solution u in H1

0 (Ω) of (0.1),
in the sense that

(0.8)

∫
Ω

M(x)∇u · ∇ϕ =

∫
Ω

f ϕ

u
∀ϕ ∈ C1

0(Ω) .

Theorem 0.8. Let µ be a nonnegative Radon measure concentrated
on a Borel set E of zero harmonic capacity, and let gn be a sequence
of nonnegative L∞(Ω) functions that converges to µ in the narrow
topology of measures. Let γ = 1, and let un be the solution of (0.6)
with gn as datum. Then un converges weakly to zero in H1

0 (Ω).

Theorem 0.9. Let γ > 1 and let f be a nonnegative function in L1(Ω)
(not identically zero). Then there exists a solution u in H1

loc(Ω) of (0.1)

(in the sense of (0.4)). Furthermore, u
γ+1
2 belongs to H1

0 (Ω) (this is the
meaning of u = 0 on the boundary of Ω).
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Remark 0.10. The case γ > 1 corresponds to 1
2
< A < 1 in problem

(0.5).


