SEMILINEAR ELLIPTIC EQUATIONS WITH SINGULAR NONLINEARITIES

LUCIO BOCCARDO

(joint paper with L. Orsina - Calc. Var.)
(Granada, 14.9.2009)
We study existence and nonexistence of solutions for the following semilinear elliptic problem with a singular nonlinearity:

$$
\left\{\begin{array}{cl}
-\operatorname{div}(M(x) \nabla u)=\frac{f(x)}{u^{\gamma}} & \text { in } \Omega, \tag{0.1}\\
u>0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Here Ω is a bounded open subset of $\mathbb{R}^{N}, N \geq 2, \gamma>0$ is a real number, f is either a nonnegative function belonging to some Lebesgue space, or a nonnegative bounded Radon measure, and M is a bounded elliptic matrix; i.e., there exist $0<\alpha \leq \beta$ such that

$$
\begin{equation*}
\alpha|\xi|^{2} \leq M(x) \xi \cdot \xi, \quad|M(x)| \leq \beta, \tag{0.2}
\end{equation*}
$$

for every ξ in \mathbb{R}^{N}, for almost every x in Ω. A solution of (0.1) is a function u in $W_{0}^{1,1}(\Omega)$ such that

$$
\begin{equation*}
\forall \omega \subset \subset \Omega \exists c_{\omega}: u \geq c_{\omega}>0 \text { in } \omega, \tag{0.3}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\int_{\Omega} M(x) \nabla u \cdot \nabla \varphi=\int_{\Omega} \frac{f \varphi}{u^{\gamma}} \quad \forall \varphi \in C_{0}^{1}(\Omega) . \tag{0.4}
\end{equation*}
$$

Note that the right hand side is well defined by (0.3) since φ has compact support.

Problem (0.1) is strongly connected to the quasilinear singular problem (studied by D. Arcoya and co., L. Boccardo, P. Martinez)

$$
\left\{\begin{array}{cl}
-\Delta u+A \frac{|\nabla u|^{2}}{u}=h(x) & \text { in } \Omega, \tag{0.5}\\
u>0 & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{array}\right.
$$

[^0]with $0<A<1$, and h a nonnegative function. Indeed, if we define $v=u^{1-A}$, and formally perform a change of variable, then v is a solution of problem (0.1) with $f(x)=(1-A) h(x), \gamma=\frac{A}{1-A}$, and M the identity matrix.

We will prove some existence and regularity results for problem (0.1), depending on γ (more precisely, the cases $\gamma=1, \gamma>1$ and $\gamma<1$ will be studied separately, the first having some features in common with the second and the third), and on the summability of f. If f is a bounded Radon measure, we will prove nonexistence results; for example, we will prove that no solution exists if $f=\delta_{x_{0}}$, the Dirac mass concentrated at x_{0} in Ω, for every $\gamma>0$.

Let f be a nonnegative measurable function (not identically zero), let $n \in \mathbb{N}$, let $f_{n}(x)=\min (f(x), n)$ and consider the following problem:

$$
\left\{\begin{array}{cl}
-\operatorname{div}\left(M(x) \nabla u_{n}\right)=\frac{f_{n}}{\left(u_{n}+\frac{1}{n}\right)^{\gamma}} & \text { in } \Omega, \tag{0.6}\\
u_{n}=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

Lemma 0.1. The sequence u_{n} is increasing with respect to $n, u_{n}>0$ in Ω, and for every $\omega \subset \subset \Omega$ there exists $c_{\omega}>0$ (independent on n) such that

$$
\begin{equation*}
u_{n}(x) \geq c_{\omega}>0 \quad \text { for every } x \text { in } \omega \text {, for every } n \text { in } \mathbb{N} . \tag{0.7}
\end{equation*}
$$

Remark 0.2. If u_{n} and v_{n} are two solutions of (0.6), repeating the argument of the first part of the proof of Lemma 0.1 shows that $u_{n} \leq v_{n}$. By symmetry, this implies that the solution of (0.6) is unique.

If $\gamma<1$, an a priori estimates on u_{n} in $H_{0}^{1}(\Omega)$ can be obtained only if f is more regular than $L^{1}(\Omega)$.

Theorem 0.3. Let $\gamma<1$ and let f be a nonnegative (not identically zero) function in $L^{m}(\Omega)$, with $m=\frac{2 N}{N+2+\gamma(N-2)}=\left(\frac{2^{*}}{1-\gamma}\right)^{\prime}$. Then there exists a solution u in $H_{0}^{1}(\Omega)$ of (0.1).

Remark 0.4. In [BO-Houston] the authors studied the problem

$$
-\operatorname{div}(M(x) \nabla u)=\rho(x) u^{\theta},
$$

with ρ a nonnegative function in $L^{m}(\Omega)$, and $0<\theta<1$, proving existence of solutions in $H_{0}^{1}(\Omega)$ if $m \geq\left(\frac{2^{*}}{1+\theta}\right)^{\prime}$. The previous theorems allow us to extend that result to $-1<\theta<1$.

Remark 0.5. If the matrix $M(x)$ is symmetric, and if f belongs to $L^{m}(\Omega)$, with $m>\left(\frac{2^{*}}{1-\gamma}\right)^{\prime}$, the solution of (0.1) given by Theorem 0.3 is
the minimum of the functional

$$
J(v)=\frac{1}{2} \int_{\Omega} M(x) \nabla v \cdot \nabla v-\frac{1}{1-\gamma} \int_{\Omega} f v^{1-\gamma}, \quad v \in H_{0}^{1}(\Omega),
$$

which is well defined since $\gamma<1$. Indeed, if we consider the functional
$J_{n}(v)=\frac{1}{2} \int_{\Omega} M(x) \nabla v \cdot \nabla v-\frac{1}{1-\gamma} \int_{\Omega} f_{n}\left(v^{+}+\frac{1}{n}\right)^{1-\gamma}, \quad v \in H_{0}^{1}(\Omega)$,
with $f_{n}=\min (f(x), n)$, then there exists a minimum u_{n} of J_{n}. From the inequality $J_{n}\left(u_{n}\right) \leq J_{n}\left(u_{n}^{+}\right)$one can prove that $u_{n} \geq 0$, so that u_{n} is a solution of the Euler equation for J_{n}, i.e., of (0.6). Therefore, by Lemma 0.1 and Remark $0.2, u_{n}$ is unique and increasing in n, satisfies (0.7) and, from the inequality $J\left(u_{n}\right) \leq J_{n}(0) \leq C$, it is bounded in $H_{0}^{1}(\Omega)$ (with the same proof of Theorem ??). If u is the limit of u_{n}, letting n tend to infinity in the inequalities $J_{n}\left(u_{n}\right) \leq J_{n}(v)$, one finds that $J(u) \leq J(v)$, so that u is a minimum of J, and u is a solution of (0.1) (by Theorem 0.3). Since u satisfies (0.7), equation (0.1) can be seen as the Euler equation for J; note that J is not differentiable on $H_{0}^{1}(\Omega)$.

If $m<\left(\frac{2^{*}}{1-\gamma}\right)^{\prime}$, we no longer have solutions in $H_{0}^{1}(\Omega)$, but in a larger Sobolev space (which depends on m).

Theorem 0.6. Let $\gamma<1$, and let f belong to $L^{m}(\Omega), 1 \leq m<$ $\frac{2 N}{N+2+\gamma(N-2)}$. Then there exists a solution u of (0.1), with u in $W_{0}^{1, q}(\Omega)$, $q=\frac{N m(\gamma+1)}{N-m(1-\gamma)}$.
Theorem 0.7. Let $\gamma=1$ and let f be a nonnegative function in $L^{1}(\Omega)$ (not identically zero). Then there exists a solution u in $H_{0}^{1}(\Omega)$ of (0.1), in the sense that

$$
\begin{equation*}
\int_{\Omega} M(x) \nabla u \cdot \nabla \varphi=\int_{\Omega} \frac{f \varphi}{u} \quad \forall \varphi \in C_{0}^{1}(\Omega) . \tag{0.8}
\end{equation*}
$$

Theorem 0.8. Let μ be a nonnegative Radon measure concentrated on a Borel set E of zero harmonic capacity, and let g_{n} be a sequence of nonnegative $L^{\infty}(\Omega)$ functions that converges to μ in the narrow topology of measures. Let $\gamma=1$, and let u_{n} be the solution of (0.6) with g_{n} as datum. Then u_{n} converges weakly to zero in $H_{0}^{1}(\Omega)$.

Theorem 0.9. Let $\gamma>1$ and let f be a nonnegative function in $L^{1}(\Omega)$ (not identically zero). Then there exists a solution u in $H_{\mathrm{loc}}^{1}(\Omega)$ of (0.1) (in the sense of (0.4)). Furthermore, $u^{\frac{\gamma+1}{2}}$ belongs to $H_{0}^{1}(\Omega)$ (this is the meaning of $u=0$ on the boundary of Ω).

Remark 0.10. The case $\gamma>1$ corresponds to $\frac{1}{2}<A<1$ in problem (0.5).

[^0]: Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy. E-mail: boccardo@mat.uniroma1.it, orsina@mat.uniroma1.it.

