SEMILINEAR ELLIPTIC EQUATIONS WITH SINGULAR NONLINEARITIES

LUCIO BOCCARDO

(joint paper with L. Orsina - Calc. Var.) (Granada, 14.9.2009)

We study existence and nonexistence of solutions for the following semilinear elliptic problem with a singular nonlinearity:

(0.1)
$$\begin{cases} -\operatorname{div}(M(x)\nabla u) = \frac{f(x)}{u^{\gamma}} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

Here Ω is a bounded open subset of \mathbb{R}^N , $N \geq 2$, $\gamma > 0$ is a real number, f is either a nonnegative function belonging to some Lebesgue space, or a nonnegative bounded Radon measure, and M is a bounded elliptic matrix; i.e., there exist $0 < \alpha \leq \beta$ such that

(0.2)
$$\alpha |\xi|^2 \le M(x)\xi \cdot \xi, \qquad |M(x)| \le \beta,$$

for every ξ in \mathbb{R}^N , for almost every x in Ω . A solution of (0.1) is a function u in $W_0^{1,1}(\Omega)$ such that

(0.3)
$$\forall \omega \subset \subset \Omega \ \exists c_{\omega} : u \ge c_{\omega} > 0 \text{ in } \omega,$$

and such that

(0.4)
$$\int_{\Omega} M(x)\nabla u \cdot \nabla \varphi = \int_{\Omega} \frac{f \varphi}{u^{\gamma}} \qquad \forall \varphi \in C_0^1(\Omega) \,.$$

Note that the right hand side is well defined by (0.3) since φ has compact support.

Problem (0.1) is strongly connected to the quasilinear singular problem (studied by D. Arcoya and co., L. Boccardo, P. Martinez)

(0.5)
$$\begin{cases} -\Delta u + A \frac{|\nabla u|^2}{u} = h(x) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy. E-mail: boccardo@mat.uniroma1.it, orsina@mat.uniroma1.it.

LUCIO BOCCARDO

with 0 < A < 1, and h a nonnegative function. Indeed, if we define $v = u^{1-A}$, and formally perform a change of variable, then v is a solution of problem (0.1) with f(x) = (1 - A) h(x), $\gamma = \frac{A}{1-A}$, and M the identity matrix.

We will prove some existence and regularity results for problem (0.1), depending on γ (more precisely, the cases $\gamma = 1$, $\gamma > 1$ and $\gamma < 1$ will be studied separately, the first having some features in common with the second and the third), and on the summability of f. If fis a bounded Radon measure, we will prove nonexistence results; for example, we will prove that no solution exists if $f = \delta_{x_0}$, the Dirac mass concentrated at x_0 in Ω , for every $\gamma > 0$.

Let f be a nonnegative measurable function (not identically zero), let $n \in \mathbb{N}$, let $f_n(x) = \min(f(x), n)$ and consider the following problem:

(0.6)
$$\begin{cases} -\operatorname{div}(M(x)\nabla u_n) = \frac{f_n}{(u_n + \frac{1}{n})^{\gamma}} & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial\Omega. \end{cases}$$

Lemma 0.1. The sequence u_n is increasing with respect to n, $u_n > 0$ in Ω , and for every $\omega \subset \subset \Omega$ there exists $c_{\omega} > 0$ (independent on n) such that

(0.7)
$$u_n(x) \ge c_{\omega} > 0$$
 for every x in ω , for every n in \mathbb{N} .

Remark 0.2. If u_n and v_n are two solutions of (0.6), repeating the argument of the first part of the proof of Lemma 0.1 shows that $u_n \leq v_n$. By symmetry, this implies that the solution of (0.6) is unique.

If $\gamma < 1$, an *a priori* estimates on u_n in $H_0^1(\Omega)$ can be obtained only if f is more regular than $L^1(\Omega)$.

Theorem 0.3. Let $\gamma < 1$ and let f be a nonnegative (not identically zero) function in $L^m(\Omega)$, with $m = \frac{2N}{N+2+\gamma(N-2)} = \left(\frac{2^*}{1-\gamma}\right)'$. Then there exists a solution u in $H_0^1(\Omega)$ of (0.1).

Remark 0.4. In [BO-Houston] the authors studied the problem

$$-\operatorname{div}(M(x)\,\nabla u) = \rho(x)\,u^{\theta}\,,$$

with ρ a nonnegative function in $L^m(\Omega)$, and $0 < \theta < 1$, proving existence of solutions in $H_0^1(\Omega)$ if $m \ge \left(\frac{2^*}{1+\theta}\right)'$. The previous theorems allow us to extend that result to $-1 < \theta < 1$.

Remark 0.5. If the matrix M(x) is symmetric, and if f belongs to $L^m(\Omega)$, with $m > \left(\frac{2^*}{1-\gamma}\right)'$, the solution of (0.1) given by Theorem 0.3 is

the minimum of the functional

$$J(v) = \frac{1}{2} \int_{\Omega} M(x) \nabla v \cdot \nabla v - \frac{1}{1 - \gamma} \int_{\Omega} f v^{1 - \gamma}, \quad v \in H_0^1(\Omega),$$

which is well defined since $\gamma < 1$. Indeed, if we consider the functional

$$J_n(v) = \frac{1}{2} \int_{\Omega} M(x) \nabla v \cdot \nabla v - \frac{1}{1-\gamma} \int_{\Omega} f_n \left(v^+ + \frac{1}{n} \right)^{1-\gamma}, \quad v \in H_0^1(\Omega),$$

with $f_n = \min(f(x), n)$, then there exists a minimum u_n of J_n . From the inequality $J_n(u_n) \leq J_n(u_n^+)$ one can prove that $u_n \geq 0$, so that u_n is a solution of the Euler equation for J_n , i.e., of (0.6). Therefore, by Lemma 0.1 and Remark 0.2, u_n is unique and increasing in n, satisfies (0.7) and, from the inequality $J(u_n) \leq J_n(0) \leq C$, it is bounded in $H_0^1(\Omega)$ (with the same proof of Theorem ??). If u is the limit of u_n , letting n tend to infinity in the inequalities $J_n(u_n) \leq J_n(v)$, one finds that $J(u) \leq J(v)$, so that u is a minimum of J, and u is a solution of (0.1) (by Theorem 0.3). Since u satisfies (0.7), equation (0.1) can be seen as the Euler equation for J; note that J is not differentiable on $H_0^1(\Omega)$.

If $m < \left(\frac{2^*}{1-\gamma}\right)'$, we no longer have solutions in $H_0^1(\Omega)$, but in a larger Sobolev space (which depends on m).

Theorem 0.6. Let $\gamma < 1$, and let f belong to $L^m(\Omega)$, $1 \leq m < \frac{2N}{N+2+\gamma(N-2)}$. Then there exists a solution u of (0.1), with u in $W_0^{1,q}(\Omega)$, $q = \frac{Nm(\gamma+1)}{N-m(1-\gamma)}$.

Theorem 0.7. Let $\gamma = 1$ and let f be a nonnegative function in $L^1(\Omega)$ (not identically zero). Then there exists a solution u in $H_0^1(\Omega)$ of (0.1), in the sense that

(0.8)
$$\int_{\Omega} M(x)\nabla u \cdot \nabla \varphi = \int_{\Omega} \frac{f \varphi}{u} \qquad \forall \varphi \in C_0^1(\Omega) \,.$$

Theorem 0.8. Let μ be a nonnegative Radon measure concentrated on a Borel set E of zero harmonic capacity, and let g_n be a sequence of nonnegative $L^{\infty}(\Omega)$ functions that converges to μ in the narrow topology of measures. Let $\gamma = 1$, and let u_n be the solution of (0.6) with g_n as datum. Then u_n converges weakly to zero in $H_0^1(\Omega)$.

Theorem 0.9. Let $\gamma > 1$ and let f be a nonnegative function in $L^1(\Omega)$ (not identically zero). Then there exists a solution u in $H^1_{loc}(\Omega)$ of (0.1) (in the sense of (0.4)). Furthermore, $u^{\frac{\gamma+1}{2}}$ belongs to $H^1_0(\Omega)$ (this is the meaning of u = 0 on the boundary of Ω). **Remark 0.10.** The case $\gamma > 1$ corresponds to $\frac{1}{2} < A < 1$ in problem (0.5).

4