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Existence and symmetry of least energy solutions Overview observations

Talk based upon the recent papers:

L. Jeanjean, M.S.,
Existence and symmetry of least energy solutions for a class of quasi-linear elliptic
equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1701–1716.

M. Colin, L. Jeanjean, M.S.,
Stability and instability results for standing waves of quasi-linear Schrodinger
equations, preprint, 40pp, arXiv: 0906.5261.

L. Jeanjean, M.S.,
An approach to minimization under constraint: the added mass technique,
preprint, 23pp, arXiv: 0906.1081

H. Hajaiej, M.S.,

Generalized Polya-Szegö inequality and applications to some quasi-linear

problems, preprint, 21pp, arXiv:0903.3975v3.
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Existence and symmetry of least energy solutions Overview observations

Some classical related references:

H. Berestycki, P.-L. Lions,
Nonlinear scalar field equations. I. Existence of a ground state,
Arch. Rational Mech. Anal. 82 (1983), 313–345.

H. Brezis, E.H. Lieb,
Minimum action solutions of some vector field equations,
Comm. Math. Phys. 96 (1984), 97–113.

J.E. Brothers, W.P. Ziemer,
Minimal rearrangements of Sobolev functions,
J. Reine Angew. Math. 384 (1988), 153–179.

T. Cazenave, P.L. Lions,

Orbital stability of standing waves for some nonlinear Schrödinger equations,

Comm. Math. Phys. 85 (1982), 549–561.
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals I

Show
existence and radial symmetry

of any least energy solution to

−div(jξ(u,Du)) + js(u,Du) = f (u) in D′(R
n).

We look for solutions in D1,p(Rn), 1 < p ≤ n. If F (s) =
∫ s

0 f (t), the
equation is formally associated with the functional

I (u) =
∫

Rn
j(u,Du) −

∫

Rn
F (u).

A least energy solution is nontrivial function u ∈ D1,p(Rn) with

I (u) = inf
{

I (v ) : v ∈ D1,p(R
n) \ {0} is a solution of the eq.

}

.
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals IIa

Improve and provide new simplified proofs for

generalized Polya-Szegö inequalities

∫

Rn
j(u∗, |∇u∗|)dx ≤

∫

Rn
j(u, |∇u|)dx ,

∫

Rn
F (|x |, u1, . . . , um)dx ≤

∫

Rn
F (|x |, u∗

1 , . . . , u∗
m)dx

Here u∗ denotes the Schwarz symmetrization of u.
- explicit dependence on u (first inequality)
- multiple components and x dependence (second inequality)

Assumptions? Impact on applications?
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals IIb

Better understanding and new simplified proofs for

identity cases, that is

∫

Rn
j(u∗, |∇u∗|)dx =

∫

Rn
j(u, |∇u|)dx , Ln({x : ∇u∗(x)}) = 0

under strict convexity of {t 7→ j(s, t)} imply that

u(x) = u∗(x − x0), x ∈ R
n.

Applications: to show that any minimizer of a variational problem is
radially symmetric.
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals III

Radial symmetry of minimax CP (J. Van Schaftingen in 2005 for C 1 case)

Theorem

Let X be a Banach spaces, S ⊂ X, ∗ the Schwarz symmetrization. Let
f : X → R a continuous functional, M be a metric space and M0 a closed subset
of M and Γ0 ⊂ C (M0, X ). Let Γ = {γ ∈ C (M , X ) : γ|M0

∈ Γ0},

∞ < c = inf
γ∈Γ

sup
τ∈M

f (γ(τ)) > sup
γ0∈Γ0

sup
τ∈M0

f (γ0(τ)) = a,

and that for all polarized H and u ∈ S, we have f (uH ) ≤ f (u). Then, for every
ε ∈ (0, (c − a)/2), every δ > 0 and γ ∈ Γ such that

sup
τ∈M

f (γ(τ)) < c + ε, γ(M) ⊂ S , γ|H0
M0

∈ Γ0 for some H0 ∈ H∗,

there exists u ∈ X such that

c − 2ε ≤ f (u) ≤ c + 2ε, |df |(u) ≤ 8ε/δ, ‖u − u∗‖V ≤ Kδ.
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals III

Roughly speaking, if the functional does not increase under polarization,
then the deformation Lemma provides almost critical points which are
almost Schwarz symmetric. In the limit one finds a Schwarz symmetric
critical point. For instance, one can apply these kind of result to a
functional like

f (u) =
∫

B1

j(u, |∇u|)dx −
∫

B1

G (|x |, u)dx ,

where the growth condition on j allow j to be unbounded with respect to
u. In these cases the functional is merely lower semicontinuous, and
nonsmooth critical point theory has been applied in my paper
B. Pellacci, M.S.,
Unbounded critical points for a class of lower semicontinuous functionals,
J. Differential Equations 201 (2004), 25–62.
With the new symmetric statement, under suitable assumption I now find
a radially symmetric mountain pass solution as a critical point of f (in the
sense of weak slope).
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals IV

Quasi-linear Schrödinger equation

{

iφt + ∆φ + φ∆|φ|2 + |φ|p−1φ = 0 in (0, ∞) × RN ,

φ(0, x) = a0(x) in RN

For this equation, investigate

• property of ground states;
• stability;
• instability,
• bifurcations results.

The principal part of the Lagrangian associated with the stationary
problem is j(s, ξ) = 1

2(1 + s2)|ξ|2.
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Existence and symmetry of least energy solutions Some related analysis papers

Know existence and symmetry results

Existence and symmetry of least energy solution (scalar case) for

−∆pu = f (u) in D′(R
n).

p = 2: Berestycki, Lions (’83).
p 6= 2: Gazzola, Ferrero, Tang, Serrin, Ni, Peletier, Atkinson, Franchi,
Lanconelli, Citti, and others..

Case p = 2 and some studies of the case p 6= 2 use constrained
minimization (suitable assumptions on f ,F ):

J |M (u) =
∫

Rn |∇u|p , M = {u ∈ D1,p :
∫

Rn F (u) = 1}. Of course,
rearrangement inequalities can be used here!

∫

Rn |∇u∗|p ≤
∫

Rn |∇u|p,
∫

Rn F (u∗) =
∫

Rn F (u).

Existence: OK. Radial symmetry: OK.
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Existence and symmetry of least energy solutions Some related analysis papers

Know existence and symmetry results

Existence of least energy solution (vector case) for

−∆ui = f (u1, . . . , um) in D′(R
n).

H. Brezis, E.H. Lieb (1984).

This paper develops a new technique, a refinement of the constrained
minimization technique. In fact, in general, unless one assumes some
cooperativity conditions (see later) on F

∫

Rn
F (u1, . . . , um)dx 6≤

∫

Rn
F (u∗

1 , . . . , u∗
m)dx

Hence, no rearrangement technique!

Existence: OK. Radial symmetry: left open.
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Existence and symmetry of least energy solutions Some related analysis papers

Recall of cooperativity conditions

For F : [0, ∞) × Rm
+ → R measurable in r and continuous with respect to

(s1, . . . , sm) with F (r , 0, . . . , 0) = 0 for any r ,

F (r , s + hei + kej ) + F (r , s) ≥ F (r , s + hei ) + F (r , s + kej ),

F (r1, s + hei ) + F (r0, s) ≤ F (r1, s) + F (r0, s + hei ),

for every i 6= j = 1, . . . ,m where ei denotes the i -th standard basis vector
in Rm, r > 0, h, k > 0, s ∈ Rm and r0, r1 with 0 < r0 < r1.

Marco Squassina (Dept of CS - Verona) Existence, symmetry and stability results Granada, 6 October 2009 12 / 41



Existence and symmetry of least energy solutions Some related analysis papers

Recall of cooperativity conditions

For F : [0, ∞) × Rm
+ → R measurable in r and continuous with respect to

(s1, . . . , sm) with F (r , 0, . . . , 0) = 0 for any r ,

F (r , s + hei + kej ) + F (r , s) ≥ F (r , s + hei ) + F (r , s + kej ),

F (r1, s + hei ) + F (r0, s) ≤ F (r1, s) + F (r0, s + hei ),

for every i 6= j = 1, . . . ,m where ei denotes the i -th standard basis vector
in Rm, r > 0, h, k > 0, s ∈ Rm and r0, r1 with 0 < r0 < r1.

Marco Squassina (Dept of CS - Verona) Existence, symmetry and stability results Granada, 6 October 2009 12 / 41



Existence and symmetry of least energy solutions Some related analysis papers

General Conditions

Introducing the functionals,

J(u) =
∫

Rn
j(u,Du), V (u) =

∫

Rn
F (u), u ∈ D1,p(R

n),

we consider the following constrained problem

minimize J(u) subject to the constraint V (u) = 1. (P1)

More precisely, let us set

X =
{

u ∈ D1,p(R
n) : F (u) ∈ L1(R

n)
}

,

and
T = inf

C
J, C =

{

u ∈ X : V (u) = 1
}

.
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Existence and symmetry of least energy solutions Some related analysis papers

General Conditions

Consider 3 conditions (Existence, Euler Eq., Pohozaev Id.):

(C1) T > 0 and problem (P1) has a minimizer u ∈ X ;

(C2) any minimizer u ∈ X of (P1) is C 1 solution and it satisfies

−div(jξ(u,Du)) + js(u,Du) = µf (u) in D′(R
n),

for some µ ∈ R.

(C3) any solution u ∈ X of the previous equation satisfies

(n − p)J(u) = µnV (u).

Of course, usually, condition (C1) is the more delicate to check.
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Existence and symmetry of least energy solutions Some related analysis papers

General Conditions

Theorem

Assume that 1 < p < n and that conditions (C1)-(C3) hold. Then, under
suitable assumptions on f ,F (see in a minute..), the problem

−div(jξ(u,Du)) + js(u,Du) = f (u) in D′(R
n)

admits a least energy solution and each least energy solution has a
constant sign and is radially symmetric, up to a translation in Rn.

J. Byeon, L. Jeanjean, M. Maris,
Symmetry and monotonicity of least energy solutions,
Calc. Var. PDE, to appear.
M. Mariş,
On the symmetry of minimizers,
Arch. Rat. Mech. Anal. 192 (2009), 311–330.
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Existence and symmetry of least energy solutions Some related analysis papers

Main goals

- Our aim is to look for conditions on j and f ,F such that conditions
(C1), (C2) and (C3) are fulfilled.

- We do not involve Schwarz symmetrization arguments, although there
are some results for the operator j(u, |∇u|). Some results can be obtained
for systems (this avoids cooperativity conditions on F );

- Existence proofs follows the line of Brezis-Lieb, CMP 96 (’84);

- Nearly optimal assumptions on F (some improvements also with respect
to the literature of the p-laplacian case, j(ξ) = |ξ|p).

- Radial symmetry relies on the paper by Mariş, On the symmetry of
minimizers, Arch. Rat. Mech. Anal., (2009).
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Main result: assumptions on F

Let F : R → R be a function of class C 1 such that F (0) = 0.

lim sup
s→0

F (s)

|s |p∗ ≤ 0;

there exists s0 ∈ R such that F (s0) > 0.

Moreover, if f (s) = F ′(s) for any s ∈ R,

lim
s→∞

f (s)

|s |p∗−1
= 0.
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Main result: assumptions on j

Let j(s, ξ) : R × Rn → R be a function of class C 1 in s and ξ and denote
by js and jξ the derivatives of j with respect of s and ξ.

{ξ 7→ j(s, ξ)} is strictly convex and p-homogeneous.

There exist positive constants c1, c2, c3, c4 and R with

c1|ξ|
p ≤ j(s, ξ) ≤ c2|ξ|

p ;

|js(s, ξ)| ≤ c3|ξ|
p , |jξ(s, ξ)| ≤ c4|ξ|

p−1;

js(s, ξ)s ≥ 0, for |s | ≥ R.
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Main result: statement for p < n

Theorem

Equation

−div(jξ(u,Du)) + js(u,Du) = f (u) in D′(R
n)

admits a radially symmetric least energy solution u ∈ D1,p(Rn).

Theorem

Any least energy solution of

−div(jξ(u,Du)) + js(u,Du) = f (u) in D′(R
n)

has a constant sign and is radially symmetric.
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Main result: statement for p = n

Let F : R → R be a C 1 function such that F (0) = 0. We assume:

there exists δ > 0 such that F (s) < 0 for all 0 < |s | ≤ δ;

there exists s0 ∈ R such that F (s0) > 0;

there exist q > 1 and c > 0 such that |f (s)| ≤ c + c |s |q−1 for all s ∈ R.

if u ∈ D1,n(R
n) and u 6≡ 0 then f (u) 6≡ 0.

Theorem

Equation

−div(jξ(u,Du)) + js(u,Du) = f (u) in D′(R
n)

admits a least energy solution u ∈ D1,n(Rn). Furthermore any least
energy solution has a constant sign and if a least energy solution
u ∈ D1,n(Rn) satisfies u(x) → 0 as |x | → ∞ it is radially symmetric, up
to a translation in Rn.
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Sketch of the Proof (just for case p < n)

Consider a minimizing sequence (uh) ⊂ C for J, F (uh) ∈ L1(Rn),

J(uh) = lim
h

∫

Rn
j(uh,Duh) = T , V (uh) =

∫

Rn
F (uh) = 1.

Hence (uh) is bounded, goes weakly to u in D1,p and, by convexity,

∫

Rn
j(u,Du) ≤ lim inf

h

∫

Rn
j(uh,Duh) = T .

Working on the assumptions on F , we find ε1, ε2 > 0 such that

Ln
(

{x ∈ R
n : |uh(x)| > ε1}

)

≥ ε2, for all h ∈ N.

Hence, by a lemma due to Lieb, there exists a shifting sequence
(ξh) ⊂ Rn such that (uh(x + ξh)) converges weakly to a nontrivial limit.
Thus, we may assume that u 6≡ 0.
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Sketch of the Proof

This follows from a useful property, Lemma 6, from

E.H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection
of two domains, Invent. Math. 74 (1983), 441–448.
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Sketch of the Proof

Semi-linear case does not require local strong convergence in D1,p.
(Fully) quasi-linear case requires local strong convergence in D1,p.
1. We use Ekeland variational principle (in nonsmooth framework);
2. We show that (uh) is a Palais-Smale (in suitable sense), and there
exists a sequence µh of almost Lagrange multipliers,

J ′(uh)(v ) = µhV
′(uh)(v ) + 〈ηh, v 〉, v ∈ C ∞

c (R
n), ηh → 0 in D∗

3. We use previous compactness results (M.S., Topol. Meth. Nonlinear
Anal. 17 (2001)) to get that uh → u locally in D1,p;
4. The sequence µh goes to some µ and J ′(u) = µV ′(u);
5. As J(wσ) = σn−pJ(w), V (wσ) = σnV (w) (wσ(x) = w(x/σ))

∫

Rn
j(w ,Dw) ≥ T

(

∫

Rn
F (w)

)
n−p
n

,

for all w ∈ D1,p(Rn) with V (w) > 0.
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Sketch of the Proof

6. Take a φ ∈ D1,p with compact support and

1 +
∫

Rn
F (u + φ) − F (u) > 0.

Then,
∫

Rn
F (uh + φ) = 1 +

∫

Rn
F (u + φ) −

∫

Rn
F (u) + o(1).

as h → ∞.
7. Moreover (here we need the local strong convergence),

∫

Rn
j(uh + φ,Duh + Dφ) = T +

∫

Rn
j(u + φ,Du + Dφ)− j(u,Du) + o(1),

as h → ∞.
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Sketch of the Proof

8. Hence, choosing w = uh + φ above, and taking h → ∞,

T +
∫

Rn
j(u + φ,Du + Dφ)−

∫

Rn
j(u,Du)

≥ T

(

1 +
∫

Rn
F (u + φ)−

∫

Rn
F (u)

)
n−p
n

,

for any such a φ ∈ D1,p with compact support.
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9. Fixed λ close to 1, for some r > 1 consider Λ ∈ C ∞(R+, R+),

Λ(t) = λ if t ≤ 1, Λ(t) = 1 if t ≥ r ,

with ρ = inf
R+

Λ >
1
2 and sup

R+
|Λ′| <

ρ
r
.

10. We consider Πh : Rn → Rn,

Πh(x) = hΠ
(x

h

)

=











λx if |x | ≤ h,

Λ
( |x |

h

)

x if h ≤ |x | ≤ rh,

x if |x | ≥ rh,

and set
φh(x) = u(Πh(x)) − u(x).
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Sketch of the Proof

11. Hence φh ∈ D1,p(Rn) has compact support and

1 +
∫

Rn
F (u + φh)− F (u) > 0,

at least for all values of λ sufficiently close to 1.

Hence, for any h ∈ N, we conclude

T +
∫

Rn
j(u + φh,Du + Dφh)−

∫

Rn
j(u,Du)

≥ T

(

1 +
∫

Rn
F (u + φh) −

∫

Rn
F (u)

)
n−p
n

.
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Sketch of the Proof

12. It also holds
∫

Rn
j(u + φh,Du + Dφh) = λp−n

∫

Rn
j(u,Du) + o(1),

∫

Rn
F (u + φh) = λ−n

∫

Rn
F (u) + o(1),

as h → ∞. Then

T + (λp−n − 1)
∫

Rn
j(u,Du) ≥ T

(

1 + (λ−n − 1)
∫

Rn
F (u)

)
n−p
n

for every λ sufficiently close to 1. Choosing λ = 1± ω with ω > 0 small
and then letting ω → 0+, we conclude that

∫

Rn
j(u,Du) = T

∫

Rn
F (u).
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Sketch of the Proof

This forces immediately

T =
∫

Rn
j(u,Du),

∫

Rn
F (u) = 1,

concluding the proof!
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Other directions of work:

Generalized Polya-Szegö inequality:

Theorem

Whenever {ξ 7→ j(s, |ξ|)} is convex and the associated functional of the
calculus of variation is weakly lower semicontinuous,

∫

Rn
j(u∗, |∇u∗|)dx ≤

∫

Rn
j(u, |∇u|)dx ,

allowing minimizers of some variational pb to be radial. No restrictive
growth conditions is needed (some previous results by Tahraoui). Preprint
with H. Hajaiej includes various applications.
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Other directions of work:

Idea: denoting

J(u) =
∫

Rn
j(u, |∇u|)dx ,

given u ∈ W 1,p
+ (RN), prove that there exists a sequence (un) with

J(un+1) ≤ J(un) ≤ · · · ≤ J(u), un ⇀ u∗.

Then weakly lower semicontinuity yields the assertion. End of the proof!

For a dense sequence (Hn)n≥1 in a half plane H, define

un+1 = ((uH1
0 )H2)...Hn+1, u0 = u.

where

uH(x) :=

{

max{u(x), u(σH (x))}, for x ∈ H ,

min{u(x), u(σH (x))}, for x ∈ RN \ H .

Two-point polarization of u (σH (x) a reflection of x w.r.t. H).
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Other directions of work:

Identity cases in the generalized Polya-Szegö inequality:

Theorem

M = esssup
RN u, C ∗ = {x ∈ R

N : ∇u∗(x) = 0}.

∫

Rn
j(u∗, |∇u∗|)dx =

∫

Rn
j(u, |∇u|)dx , Ln(C ∗ ∩ (u∗)−1(0,M)) = 0

and strict convexity of {ξ 7→ j(s, |ξ|)} imply that

u(x) = u∗(x − x0), x ∈ R
n.

for some x0 ∈ RN

allowing any minimizer of some variational pb to be radial. Idea: reducing
to ‖∇u∗‖p = ‖∇u‖p and thus to the framework of Brothers-Ziemer.
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Existence and symmetry of least energy solutions Some related analysis papers

Other directions of work:

As an application of the symmetrization inequalities (including identity
cases) we study the following general minimisation problem

T = inf
{

J(u) : u ∈ C
}

,

where

C =
{

u ∈ W 1,p : Gk(uk), jk (uk , |∇uk |) ∈ L1,
m

∑
k=1

∫

RN
Gk(uk)dx = 1

}

,

where J is the functional defined, for u = (u1, . . . , um), by

J(u) =
m

∑
k=1

∫

RN
jk(uk , |∇uk |)dx −

∫

RN
F (|x |, u1, . . . , um)dx .

Suitable assumption on jk ,F . Existence, symmetry of minimizers.
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Quasi-linear Schrödinger equations (plasma physics,

quantum mechanics)

We study the quasi-linear Schrödinger equation

{

iφt + ∆φ + φ∆|φ|2 + |φ|p−1φ = 0 in (0, ∞) × RN ,

φ(0, x) = a0(x) in RN .

By standing waves, we mean solutions of the form φω(t, x) = uω(x)e−iωt.
Here ω is a fixed parameter and φω(t, x) satisfies the problem if and only
if uω is a solution of the equation

−∆u − u∆|u|2 + ωu = |u|p−1u, in R
N .
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Ground states

We say that a weak solution of the problem is a ground state if it holds
Eω(u) = mω, where

mω = inf{Eω(u) : u is a nontrivial weak solution}.

Here, Eω is the action associated and reads

Eω(u) =
1

2

∫

RN
|∇u|2dx +

1

4

∫

RN
|∇|u|2|2dx

+
ω

2

∫

RN
|u|2dx −

1

p + 1

∫

RN
|u|p+1dx .

We denote by Gω the set of ground state solutions.
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Ground states

Theorem (Behaviour of ground states)

For all ω > 0, Gω is non void and any u ∈ Gω is of the form

u(x) = e iθ|u(x)|, x ∈ R
N ,

for some θ ∈ S1. In particular, the elements of Gω are, up to a constant
complex phase, real-valued and non-negative. Furthermore any real
non-negative ground state u ∈ Gω satisfies the following properties

i) u ∈ C 2(RN) and u > 0 in RN ,

ii) u is radially symmetric and decreasing,

iii) for all α ∈ NN with |α| ≤ 2, there exists (cα, δα) ∈ (R∗
+)2 such that

|Dαu(x)| ≤ Cαe
−δα|x |, for all x ∈ R

N .

Moreover, for N = 1, there exists a unique positive ground state.
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Orbital instability
Theorem (Orbital instability)

Assume that ω > 0,

p > 3 +
4

N
.

Let u ∈ XC be a ground state solution of

− ∆u + u∆|u|2 + ωu = |u|p−1u in R
N . (1)

Then, for all ε > 0, there is a0 ∈ Hs+2(RN) such that ‖a0 − u‖H1(RN ) < ε

and the solution φ(t) of the Schrödinger equation with φ(0) = a0 blows
up in finite time.

We establish a virial type identity. Then we introduce some sets invariant
under the flow. Then, by a constrained approach, playing between various
characterization of the ground states we derive the blow up result without
solving a minimization problem, in contrast to Cazenave-Lions.
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Orbital stability

We consider the stability issue for the minimizers of

m(c) = inf{E(u) : u ∈ X , ‖u‖2
2 = c},

X =
{

u ∈ H1(R
N , C) :

∫

RN
|u|2|∇u|2dx < ∞

}

,

where the energy E reads as

E(u) =
1

2

∫

RN
|∇u|2dx +

1

4

∫

RN
|∇|u|2|2dx −

1

p + 1

∫

RN
|u|p+1dx .

If p < 3 + 4
N

, then m(c) > −∞, for any c > 0.
If p > 3 + 4

N
, then m(c) = −∞, for any c > 0.

Denote by G(c) the set of solutions to m(c).
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Orbital stability

Theorem (Orbital stability)

Assume that

1 < p < 3 +
4

N
,

and let c > 0 be such that m(c) < 0. Then G(c) is non void and orbitally
stable. Furthermore, in the two following cases

i) 1 < p < 1 + 4
N

and c > 0,

ii) 1 + 4
N
≤ p < 3 + 4

N
and c > 0 is sufficiently large,

we have m(c) < 0.
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Existence and symmetry of least energy solutions Stability/Instability for quasi-linear Schrödinger equations

Bifurcation phenomena

Theorem (Bifurcation)

Assume that 1 + 4
N
≤ p ≤ 3 + 4

N
. Then there exists c(p,N) > 0 with

i) If 0 < c < c(p,N) then m(c) = 0 and m(c) has no minimizer.

ii) If c > c(p,N) then m(c) < 0 and m(c) has a minimizer and
{c → m(c)} is strictly decreasing.
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Thank you very much!
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