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In Quantum Mechanics, any state of a particle in 3-dimensional space can
be described by a function

P(xt) € C,

(x,t) e R* xR
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In Quantum Mechanics, any state of a particle in 3-dimensional space can
be described by a function

P(xt) € C,

(x,t) € R® x R ~ Wave Function
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Physical Motivations

In Quantum Mechanics, any state of a particle in 3-dimensional space can
be described by a function

U(x, t) € C, (x,t) € R® x R ~» Wave Function

9|2 dx

is the probability that the coordinates of the particle associated to v will
find their values in the element dx.
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Physical Motivations

In Quantum Mechanics, any state of a particle in 3-dimensional space can
be described by a function

U(x, t) € C, (x,t) € R® x R ~» Wave Function

9|2 dx

is the probability that the coordinates of the particle associated to v will
find their values in the element dx.

/ []? dx =1 Normalization Equation
R3
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Case of a Single Particle

oy R ,
zha——ﬂAw—i—Q(x)w, x€ER’ teR

(8€)
where m > 0, h is the Planck constant and Q : R® — R is the time
independent potential energy of the particle at position x € R3 .
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Case of Many Particles

I
g = —5 A+ Q(x)y

- |¢|p—1¢, X € Rav teR

(NSE)
where m > 0, % is the Planck constant and @ : R3 — R is the time
independent potential energy of the particle at position x € R3 , p > 1.
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electric charge.

Let us assume now that v is a charged wave and we denote by ¢ > 0 the
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Let us assume now that v is a charged wave and we denote by ¢ > 0 the
electric charge.

Hence, the wave v interacts with its own electromagnetic field E, H.
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The Schrédinger-Maxwell system

Let us assume now that v is a charged wave and we denote by ¢ > 0 the
electric charge.

Hence, the wave 1) interacts with its own electromagnetic field E, H.
Following the ideas introduced in

[
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The Schrédinger-Maxwell system

Let us assume now that v is a charged wave and we denote by ¢ > 0 the
electric charge.

Hence, the wave 1) interacts with its own electromagnetic field E, H.
Following the ideas introduced in

[4 V. Benci, D. Fortunato,
An eigenvalue problem for the Schrédinger—Maxwell equations
Top. Meth. Nonlin. Anal. 11, (1998), 283-293.

[4 V. Benci, D. Fortunato
Solitary waves of the nonlinear Klein—Gordon equation coupled with
Maxwell equations,
Rev. Math. Phys. 14, (2002), 409-420.
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The Schrédinger-Maxwell system

Let us assume now that v is a charged wave and we denote by ¢ > 0 the
electric charge.

Hence, the wave 1) interacts with its own electromagnetic field E, H.
Following the ideas introduced in

[4 V. Benci, D. Fortunato,
An eigenvalue problem for the Schrédinger—Maxwell equations
Top. Meth. Nonlin. Anal. 11, (1998), 283-293.

[4 V. Benci, D. Fortunato
Solitary waves of the nonlinear Klein—Gordon equation coupled with
Maxwell equations,
Rev. Math. Phys. 14, (2002), 409-420.

we do not assume that the electromagnetic field is assigned.
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Unknowns:

i) The wave function 1);
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Unknowns:

i) The wave function 1);
i) The gauge potentials

A:R>xR— RS $:RExR—>R

G.Vaira (SISSA) Nonlinear Systems Granada, October 20, 2010 5 /85



Unknowns:

i) The wave function 1);
i) The gauge potentials

A:R>xR— RS $:RExR—>R

related to E, H by the Maxwell equations
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Unknowns:
i) The wave function 1);
i) The gauge potentials
A:R>xR— RS $:RExR—>R
related to E, H by the Maxwell equations

O0A

E:=-Vé— .

H:=V xA.
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We choose:

1.

P(x, t) = u(x)e™t,

u(x) €R, w > 0.
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We choose:

1.

U(x, t) = u(x)e'™t, u(x) e R, w>0.
that is called standing wave.
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Standing Waves interacting with a purely electrostatic field

We choose:
1. .
U(x, t) = u(x)e'™t, u(x) eR, w>0.

that is called standing wave.
Indeed, these solutions correspond to static situations in the sense that
the density [1(x, t)|> = u?(x) does not change in time.
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Standing Waves interacting with a purely electrostatic field

We choose:
1. .
U(x, t) = u(x)e'™t, u(x) eR, w>0.
that is called standing wave.

Indeed, these solutions correspond to static situations in the sense that
the density [1(x, t)|> = u?(x) does not change in time.
2. A=0.
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Standing Waves interacting with a purely electrostatic field

We choose:

1.
P(x, t) = u(x)e™t, u(x) eR, w>0.
that is called standing wave.
Indeed, these solutions correspond to static situations in the sense that
the density [1(x, t)|> = u?(x) does not change in time.
2. A=0.

3. ¢ =¢(x).
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Then we deal with the following system of equations:

2
—%Au + V(x)u+ gpu = |ulP~tu

x € R®
(SP)
—A¢ = qu? x €R®
where g > 0 is the electric charge and V(x) = Q(x) + fw
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Then we deal with the following system of equations:

2

—Q—Au—l— V(x)u+ K(x)pu = |ulPu, x €R?
m

—A¢ = K(x)u?

(SP)
x € R?
where K : R® — R is a positive density charge and V/(x) = Q(x) + hw
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If a particle of mass m > 0 moves in its own gravitational field
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If a particle of mass m > 0 moves in its own gravitational field

i
oy B
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If a particle of mass m > 0 moves in its own gravitational field

oy
g, =5

I
o (Lo

Py ) u-luPie. x€R teR
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If a particle of mass m > 0 moves in its own gravitational field

i}
2
m@_zb__h

1 2 -1 3
O =gt (e R ) w-luP o, xR, teR
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If we look for standing waves (x, t) = u(x)e’“! then we have to deal with
the following system of equations:
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the following system of equations:

If we look for standing waves (x, t) = u(x)e’“! then we have to deal with
2

——Au+ whu — Qu = |ulP u, x € R®
2m
—AQ = u?

, (SN)
x € R
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Here:
product and norm

e H(R3) is the usual Sobolev space endowed with the standard scalar
(u,v) = / [VuVv + uv]dx;
R3

ol = [ (19 + 7] d.
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Notations:

Here:

o H(R3) is the usual Sobolev space endowed with the standard scalar
product and norm

(u,v) = / [VuVv + uv]dx; |ull® = / [[Vul® + v?] dx.
R3 R3

o DU2(RR3) is the completion of C§°(IR®) with respect to the norm

2 2
Jolfpss = [ | 1VePas.
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First of all we look for solution
(u,¢) € H(R?) x D?(R?)

for the problem (SP).
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First of all we look for solution
(u,¢) € H(R?) x D?(R?)

for the problem (SP).
We define
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First of all we look for solution
(u,¢) € H(R?) x D?(R?)

for the problem (SP).
We define

o Existence Results for € > 0 small;

Granada, October 20, 2010
G.Vaira (SISSA) Nonlinear Systems

11 /
85



First of all we look for solution
(u,¢) € H(R?) x D?(R?)

for the problem (SP).
We define

o Existence Results for € > 0 small;

o Existence Results for e = 1.
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It is well-known that, for all u € H!(R3), the Poisson equation

—Ad = K(x)u?
has a unique solution ¢, € D*2?(R3) given by

bulx) = = Ki?

[x]

:/ K(y)
R

3 |x —yl

u?(y) dy.
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Hence, inserting ¢, into the first equation of (SP), we deal with the
equivalent problem

—Au+ V(x)u+ K(x)pyu = |ulP Ly, (SP)
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Hence, inserting ¢, into the first equation of (SP), we deal with the
equivalent problem

—Au+ V(x)u+ K(x)pyu = |ulP Ly, (SP)

Remark
u € HY(R3) is a solution of (SP')
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Hence, inserting ¢, into the first equation of (SP), we deal with the
equivalent problem

—Au+ V(x)u+ K(x)pyu = |ulP Ly, (SP)

Remark

u € HY(R3) is a solution of (SP') = (u, ¢u) € HY(R?) x DV2(R3) is a
solution of (SP)
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Semiclassical States

The positive solutions u. € H}(R?) of (SP’) founded for € small are called
Semiclassical States.

Interesting classes of semiclassical states are those which exihibit a
concentration behavior around one or more special point.

Granada, October 20, 2010 14 /
G.Vaira (SISSA) 85

Nonlinear Systems



Semiclassical States

The positive solutions u. € H}(R?) of (SP’) founded for € small are called
Semiclassical States.

Interesting classes of semiclassical states are those which exihibit a
concentration behavior around one or more special point.

These solutions are called Spikes.
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Semiclassical States

The positive solutions u. € H}(R?) of (SP’) founded for € small are called

Semiclassical States.

Interesting classes of semiclassical states are those which exihibit a
concentration behavior around one or more special point.
These solutions are called Spikes.

Definition

A solution u. of (SP’) concentrates at xg € R® (as ¢ — 0) provided

Vd>0, Je>0, R>0:u(x)<d V|x—x|>€eR, e<eg
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(V1) V € C®(R3,R), V and its derivatives are uniformly bounded.
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(V2) inf V > 0.
R3

(V1) V € C®(R3,R), V and its derivatives are uniformly bounded.
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(V2) inf V > 0.
R3

(V1) V € C®(R3,R), V and its derivatives are uniformly bounded.

(V3) There exists xo € R3 such that VV(x) = 0.
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) V € C®(R3,R), V and its derivatives are uniformly bounded.
V2) inf V > 0.
)

)

There exists xg € R3 such that VV(x) = 0.
K € C*°(R3,R), K and its derivatives are uniformly bounded.
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V € C*°(R3,R), V and its derivatives are uniformly bounded.
inf V > 0.
R3

K € C*°(R3,R), K and its derivatives are uniformly bounded.

(V1)
(V2)
(V3) There exists xo € R3 such that VV(x) = 0.
(K1)
(K2) K > 0.
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Theorem (I. lanni, G. V.)
Let p € (1,5) and (V1), (V2), (V3), (K1), (K2) hold.
In addition, assume that

(V4) xo € R? is a non-degenerate local minimum or maximum for V,
namely D?V/(xo) is either positive or negative-definite.

Then for € > 0 small, (SP') has a solution u. that concentrates at xo.
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Let for simplicity xo = 0 and V(0) = 1.
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Let for simplicity xop = 0 and V/(0) = 1.
In (SP’) we make a change of variable x — €x, then we deal with the
problem

—Au+ V(ex)u + EK(ex) ey = |ulPLu, (SPe).
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Let for simplicity xo = 0 and V(0) = 1.
In (SP’) we make a change of variable x — ex, then we deal with the
problem

—Au+ V(ex)u + EK(exX)be yu = [ulP o, (SPe).

The solutions of (SP,) are the critical points of the C?>— functional
I - HY(R3) — R defined as

1 2
l(v) = 5 /R3 (|Vu|2 + V(ex)uz) dx + Z/M K (ex) e yu? dx
1
—— lulPFL dx
p+ 1 R3
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To prove the concentration result we have used a Perturbation Method,
due to Ambrosetti and Badiale.
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To prove the concentration result we have used a Perturbation Method,
due to Ambrosetti and Badiale.
In other words we consider the functional /. as

le(u) = ly(u) + G(e, u)
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Outline of the proofs

To prove the concentration result we have used a Perturbation Method,
due to Ambrosetti and Badiale.

In other words we consider the functional /. as
le(u) = ly(u) + G(e, u)

where the unperturbed functional ly(u), obtained for e =0, is

1 1
lo(u) = 5”””2 T o1 Jee |ulPdx
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Outline of the proofs

To prove the concentration result we have used a Perturbation Method
due to Ambrosetti and Badiale.

In other words we consider the functional /. as
le(u) = ly(u) + G(e, u)

where the unperturbed functional ly(u), obtained for e =0, is

bo(u) = *H I”? - +1 \U\”“dx

while the perturbation is
G(e, u) / [V(ex) — 1]u2dx+ / K (x) e yu”dx.
R3
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The critical points of the unperturbed problem are the solutions of the
well-known problem

—Au+u=|ufPtu, u € HY(R®)

which has a positive, ground state, solution U € H*(R3), radially
symmetric about the origin, unique up to translations, decaying
exponentially, together its derivatives, as |x| — +o0.
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We define the manifold of “approximate" solutions of the problem: fix
&> 0and let
Ze={ze:=U(-¢)

¢ e R,

HES3¥
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Lyapunov-Schmidt reduction

We define the manifold of “approximate" solutions of the problem: fix
&> 0and let

ZFZ:{Zgiz U(-—¢) : €eR’ \5\§§}
Then for every z; € Z., we define W = (Tz‘gZG)L and P: HY(R%) —» W
the orthogonal projection onto W. Our approach is to find a pair z; € Z,
w € W such that [/(z¢ + w) = 0, or equivalently:
Pl!(ze + w) =0,
(Id — P)l/(ze +w) =0

The fist equation above is called auxiliary equation, and the second one
receives the name of bifurcation equation.
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Abstract Result

Proposition

Consider a Hilbert space 7. Let z € H and T € C!(H,H). Suppose that
for some fixed § > 0, there holds:

(AL IT)lln <0

(A2) T'(z):H — H is invertible and [|(T"(z))|j» < ¢, ¢ > 0;

Take p > 2¢ and define:

B={ueH:|ully<pi}.
We further assume that

(A3) | T"(z+u) = T'(2)|ln < 5, u€B.
Then there exists a unique u € B such that T(z 4 v) = 0.
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o ||PIl(z)] < Cé?, ze € Z;

First we find a solution w € W of the auxiliary equation proving
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o [|PI(ze)ll < Ce?, z € Z;

First we find a solution w € W of the auxiliary equation proving

o PI”(z) is invertible and such that ||[PI”(z)]7|| < C;
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The auxiliary Equation

First we find a solution w € W of the auxiliary equation proving
o ||Pll(z)| < Cé z € 2
o PI”(z) is invertible and such that ||[PI”(z¢)] 7| < C;
o ||PI/(ze+u)—PI'(z)|| = Oforallue B={we W :|w| < Ge}.
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The auxiliary Equation

First we find a solution w € W of the auxiliary equation proving
o ||Pll(z)| < Cé z € 2
o PI”(z) is invertible and such that ||[PI”(z¢)] 7| < C;
o ||PI/(ze+u)—PI'(z)|| = Oforallue B={we W :|w| < Ge}.

Then there exists a solution w = w, , € W such that ||w, .|| < Cé?.
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Now we find a solution for the bifurcation equation among the set of
solutions of the auxiliary equation, which is:

Z = {z§+We,z§ Dz EZE}.




The bifurcation equation

Now we find a solution for the bifurcation equation among the set of
solutions of the auxiliary equation, which is:

Z = {ZngWQZg D Ze GZ;;-}.

By the Implicit Function Theorem it is easy to check that Z isa C!
manifold. Moreover, it is well-known that Z is a natural constraint for /.
for € small. In other words, critical points of /| s are solutions of the
bifurcation equation, and hence solutions of (SP.).
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So, let us define the reduced functional as the restriction of the functional
le to the natural constraint Z, namely ® : B¢(0) C R? — R,

cbf(&) = Ie(zé' + We,zg)
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The reduced functional

So, let us define the reduced functional as the restriction of the functional
le to the natural constraint Z, namely ® : B¢(0) C R? — R,

Oc(E) = fe(ze + wez)

We look for critical points of ®..
Using the information on ||w .,

d(£).

, we will be able to find an expansion of
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Expansion in the non-degenerate case

Proposition (non-degenerate case)
®(&) = Go + €T1(€) + o(€?), for |¢] <&
where
Co = h(U);
N = G+ GD*V(0),¢);
G = 1/ (D?V(0)x, x) U?(x) Uy dydx;
P4 s ’ R3 JR3 |X—Y| '
1
G = / U?(x)dx.
4 Jr3
Granada, October 20, 2010 25 /
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Lemma
O (§) = Co+€T(€) +o(”), |¢1<¢€

and assume that £ = 0 is a non-degenerate minimum (or maximum) for T
Then ®, has a minimum (or maximum) in some &, such that £ — 0 as
e — 0.
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Lemma

(&) = G+ T(€) +o(f), |4 <¢&

and assume that £ = 0 is a non-degenerate minimum (or maximum) for T

Then ®, has a minimum (or maximum) in some &, such that £ — 0 as
e — 0.

In conclusion, recalling the change of variable

= () e () =0 (5 e),

is a solution of (SP’) which concentrates near the critical point 0.
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[4 1. lanni, G. V.,
On Concentration of Positive Bound States for the
Schrédinger-Poisson Problem with Potentials
Adv. Nonlin. Studies 8, (2008), 573-595.
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[4 1. lanni, G. V.,
On Concentration of Positive Bound States for the
Schrédinger-Poisson Problem with Potentials
Adv. Nonlin. Studies 8, (2008), 573-595.

4 GV,
Semiclassical states for Klein-Gordon-Maxwell system,
to appear on J. Applied Math.
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[ I lanni, G. V.,
Solutions of the Schrddinger-Poisson problem concentrating around a
sphere, Part I: Necessary Conditions,
Mathematical Models and Methods in Applied Sciences 19, No. 5
(2009), 707-720.

(4 1. lanni,
Solutions of the Schrddinger-Poisson problem concentrating on
spheres, Il: existence,
Mathematical Models and Methods in Applied Sciences 19, No. 6
(2009), 877-910.
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By using the same technique outlined before one can also infer the
existence of multiple solutions.
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By using the same technique outlined before one can also infer the
existence of multiple solutions.
Let, for simplicity, the problem

—2Au+ V(x)u + ¢yu = |ulP7L,

u € HY(R3).
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A Multiplicity Result

By using the same technique outlined before one can also infer the
existence of multiple solutions.
Let, for simplicity, the problem

—e2Au+ V(x)u + ¢yu = |ulP7L, u € HY(R3).

If V' has a finite collection of non-degenerate critical points x;, then we
obtain a spike solution around each critical point.
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A Multiplicity Result

By using the same technique outlined before one can also infer the
existence of multiple solutions.
Let, for simplicity, the problem

—e2Au+ V(x)u + ¢yu = |ulP7L, u € HY(R3).

If V' has a finite collection of non-degenerate critical points x;, then we
obtain a spike solution around each critical point.

However, the bumps are well separated, namely the effect of one bump on
another bump is neglected.

B
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A Multiplicity Result

By using the same technique outlined before one can also infer the
existence of multiple solutions.
Let, for simplicity, the problem

—e2Au+ V(x)u + ¢yu = |ulP7L, u € HY(R3).

If V' has a finite collection of non-degenerate critical points x;, then we
obtain a spike solution around each critical point.

However, the bumps are well separated, namely the effect of one bump on
another bump is neglected.

[4 D.Ruiz, G. V.,
Cluster solutions for the Schrédinger-Poisson-Slater problem around a
local minimum of the potential,
to appear on Rev. Mat. Iberoamericana.
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Cluster Solutions

In a work of X. Kang and J. Wei, the authors consider the nonlinear
Schrédinger equation

—eAu+ V(x)u = |ulP Ly, x € R®

proving the existence of a cluster solution around a local maximum of V
and non-existence of a cluster solution around a local minimum of V.
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Our problem is now:

_ezAU + V(X)U + ¢uu — |u|p_1,

uc Hl(R3)

(O 4> <=




Our problem is now:

_ezAU + V(X)U + ¢uu — |u|p_1,

"\ repulsive term

uc Hl(R3)

(O 4> <=




Our problem is now:

_ezAU + V(X)U + ¢uu — |u|p_1,

uc Hl(R3)
\ attractive term

(O 4> <=




Assumptions

(V1) V has a local strict minimum point in Py, namely there exists a
bounded open set U such that Py € U and

V(Py) = )TGIZ?{ V(x) < V(P), VPeU\{P}

Up to a translation and dilatation, we can assume Py =0, V(0) = 1.
(V2) V(x) =1+ |g(x)|® for any x € U, where g : U — R is a C>!
function and a > 2.
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Assumptions

(V1) V has a local strict minimum point in Py, namely there exists a
bounded open set U such that Py € U and

V(Py) = )r(nelg V(x) < V(P), VPeU\{P}

Up to a translation and dilatation, we can assume Py =0, V(0) = 1.
(V2) V(x) =1+ |g(x)|® for any x € U, where g : U — R is a C>!
function and o > 2.
In particular, there holds:
(V2') V(x) <1+ C|x|* for x € U and some C > 0.

Remark

Observe that under the above conditions the local minimum must be
degenerate. We point out that conditions (V1)-(V2') are sufficient for most
of our arguments. We need condition (V2) for technical reasons, to be able

to rule out possible undesired oscillations of the derivatives of V near 0.
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Theorem (D. Ruiz, G. V.)

Assume that V satisfies (V1) and (V2) and suppose p € (1,5). Then for
any positive integer K € 7, there exists ex > 0 such that for any € < ek
there exists a positive solution u. of (SP') with K bumps converging to 0.
More specifically, there exists Q, . .. Q; € R3 such that:

Q Q —0, ¢etQf| = +ooase—0.

@ Defining Ti(x) = uc(ex), we have that
Be(x) = K U(x —e1Qf) + o(1), as e — 0.
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The Lyapunov-Schmidt reduction will be made, in this case, around an
appropriate set of “approximating solutions".
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The Lyapunov-Schmidt reduction will be made, in this case, around an
appropriate set of “approximating solutions".
For any K € N, we define

A= {PeR¥ (P - Pl = st i,

V(eP)) <1+ eaid ep; eu}

where § > 0 is chosen small enough so that % — § > 2 (this is possible

since o > 2). Observe that 2 1 +0<0 and /\6 is not empty for € small
enough.
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Fix P = (P1, ..., Pk) € Ac. Setting zp,(x) = U(x — P;), we define the
manifold of “approximate solutions":

K
Z = {ZP(X) = ZZPI.(X) : Pe /\E} .
i=1
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Fix P = (P1, ..., Pk) € Ac. Setting zp,(x) = U(x — P;), we define the
manifold of “approximate solutions":

K
Z = {ZP(X) = ZZPI.(X) : Pe /\E} .
i=1

We first prove the existence of a solution of the auxiliary equation, then we
find an expansion for the reduced functional.
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]

K
o (P) = G + €2 G+G Z V(eP;) + C3€2 Z

1 N
Brpy ol ) (1)
i#j I J

(O 4> <=




K
1 = Lo S
q)e(P) = CO +€2C1 + C2 Z V(EP,) -+ C3€2 Z m + O(€;+1 6). (1)
i=1 it ! J

For € sufficiently small, the following minimization problem

min {®(P) : P €A} (2)

has a solution P, € A..




Infinitely Many Solutions for Schrodinger-Poisson problem

Let us consider the problem

—Au+u+ K(x)pu = |ulPu, x € R3,
(SP)
—A¢ = K(x)u?, x € R3,

where p € (1,5) and K : R — R is a non-negative bounded function.
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Infinitely Many Solutions for Schrodinger-Poisson problem

Let us consider the problem

—Au+u+ K(x)pu = |ulPu, x € R3,
(SP)
—A¢ = K(x)u?, x € R3,

where p € (1,5) and K : R — R is a non-negative bounded function.
We assume that K is a radial function, that is K(x) = K(|x|) = K(r)
satisfying the following condition:

(K) There are constants a > 0, m > % 6 > 0 such that

as r — 4oo.
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Again, the problem (SP) can be reduced into a single equation:

—Au+ u+ K(|x))puu = |ulP Ly, u € HY(R?), (SP)
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Again, the problem (SP) can be reduced into a single equation:

—Au+ u+ K(|x))puu = |ulP Ly, u € HY(R?), (SP)

Theorem

If K(x) satisfies (K), then the problem (SP') has infinitely many non-radial
positive solutions.
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To prove the Theorem we construct solutions with large number of bumps
near infinity.
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To prove the Theorem we construct solutions with large number of bumps
near infinity.

In fact, since K(r) — 0 as r — +00, the solutions of (SP’) can be
approximated by using the solution U of the limit problem

—Au+u=uP, inR3,

u>0, in R3, (3)
u(x) — 0, as |x| — +oo.
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Construction

For any positive integer k, let us define

P = (rcos 2(17(1)7T,rsin 2(J;1)7T,0> e R3, j=1,...k,

with r € 5 := [(% — B) klog k, (% + B)k log k] for some 8 >0
sufficiently small and

k
z(x) =Y Up,(x),
j=1

where Up,() := U(- — P;).

Granada, October 20, 2010
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If x = (x1,x2,x3) € R3, we set

u is even in xo, x3;
u(rcosf,rsinf,x3) =

Hs = { u € H'(R?) —u (rcos (94_2%1.) , rsin <9+2T7rj) ,X3)
j=1,... k-1
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If x = (x1,x2,x3) € R3, we set

u is even in xo, x3;
u(rcosf,rsinf,x3) =

Hs = UGHl(R3) :u<rcos<9+ J) r5|n<9+277rj),x3>
j=1,... k-1

We remark that if u € Hs, then ¢, € Ds, where

@ is even in xo, X3;
¢(rcosf,rsinf, x3) =
_ 1,2(m3 ; i
Ds = { ¢ € DV*(R>) :¢<rcos(9+2%f),rsin(9+2kﬂ>7x3)
j=1... k-1
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If x = (x1,x2,x3) € R3, we set

u is even in xo, x3;
u(rcosf,rsinf,x3) =

Hs = UGHl(R3) :u<rcos<9+ J) r5|n<9+277rj),x3>
j=1,... k-1

We remark that if u € Hs, then ¢, € Ds, where

@ is even in xo, X3;
¢(rcosf,rsinf, x3) =
_ 1,2(m3 ; i
Ds = { ¢ € DV*(R>) :¢<rcos(9+2%f),rsin(9+2kﬂ>7x3)
j=1... k-1

Finally, let us define

x' P T
Qj = {X:(X/,X?,)ERzXR . <’X/|,’Pj_>ZCOSk}.
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Figure: Position of the multi-bumps solutions
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The manifold of the approximate solutions is now given by
Z:={z

rESk}
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rESk}

The manifold of the approximate solutions is now given by
Z:={z
First we find the solution of the auxiliary equation w.
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z:={z, : re S}
First we find the solution of the auxiliary equation w.

Then we study the remaining finite dimensional equation.
In this case the reduced functional is given by

k
Bi  Byklogk 1
F(I’):k C0+M+’M—B3§./R3U51UP;C/X+O W ’
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z:={z, : re S}
First we find the solution of the auxiliary equation w.

Then we study the remaining finite dimensional equation.
In this case the reduced functional is given by

k
Bi  Byklogk ‘ 1
F(I’):k C0+r2m+r2m“_B3§./R3Ug1UPidx+O W ’

The problem
max{F(r) :r € Sk}

has a solution since F is continuous on a compact set.
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z:={z, : re S}
First we find the solution of the auxiliary equation w.

Then we study the remaining finite dimensional equation.
In this case the reduced functional is given by

k
Bi  Byklogk ‘ 1
F(I’):k C0+M+’M—B3§./R3U51UP;C/X+O W ’

The problem
max{F(r) :r € Sk}
has a solution since F is continuous on a compact set.
Then we show that this maximum, ry, is an interior point of Sy.
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z:={z, : re S}
First we find the solution of the auxiliary equation w.

Then we study the remaining finite dimensional equation.
In this case the reduced functional is given by

k
Bi  Byklogk ‘ 1
F(I’):k C0+M+’M—B3§./R3U51UP;C/X+O W ’

The problem
max{F(r) :r € Sk}
has a solution since F is continuous on a compact set.
Then we show that this maximum, ry, is an interior point of Sy.
As a consequence, we can conclude that z,, + w(rk) is a solution of (SP’).
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z:={z, : re S}

First we find the solution of the auxiliary equation w.
Then we study the remaining finite dimensional equation.
In this case the reduced functional is given by

k
Bi  Byklogk ‘ 1
F(I’):k CO+M+’M—B3§./R3U,ZIUP;C/X+O W ’

The problem

max{F(r) :r € Sk}
has a solution since F is continuous on a compact set.
Then we show that this maximum, ry, is an interior point of Sy.
As a consequence, we can conclude that z,, + w(rk) is a solution of (SP’).
This prove the existence of infinitely many non-trivial non radial solutions
of (SP’).
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[ P.dAvenia, A. Pomponio, G. V.,
Existence of infinitely many positive solutions for Schrédinegr-Poisson
system, preprint.
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—Au+ u+ K(x)pu(x)u = a(x)[u]Pu,
where a: R3 — R.
The solution of
as

(SP")

are the critical points of / € C?(H'(R®),R) defined

«0O0> 4Fr «=»




—Au+u+ K(x)¢u(x)u = a(x)|u|P—1u’ (SP/)

where a: R3 — R.
The solution of (SP’) are the critical points of / € C2(H*(R3),R) defined
as

I(u) = %HUII2 ta / K(x)ulx) i — —— a(X)IUI"“dX-

p+1




Dealing with /, one has to face various difficulties:
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Dealing with /, one has to face various difficulties:

a) The competing effect of the nonlocal term with the nonlinear term
gives rise to very different situations as p varies in the interval (1,5);
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Dealing with /, one has to face various difficulties:
a) The competing effect of the nonlocal term with the nonlinear term
gives rise to very different situations as p varies in the interval (1,5);
b) The lack of compactness of the embedding of H!(R3) in the Lebesgue
spaces LI(R3), g € (2,6), prevents from using the variational
techniques in a standard way.
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Dealing with /, one has to face various difficulties:
a) The competing effect of the nonlocal term with the nonlinear term
gives rise to very different situations as p varies in the interval (1,5);

b) The lack of compactness of the embedding of H!(R3) in the Lebesgue
spaces LI(R3), g € (2,6), prevents from using the variational
techniques in a standard way.

Remark

b) can be avoided, for example, restricting / to the subspace of H!(R?)
consisting of radially symmetric functions.
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Let p € (3,5).




Let p € (3,5).
Moreover we assume that a(x) and K(x) verify, respectively
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Let p € (3,5).
Moreover we assume that a(x) and K(x) verify, respectively
(al)
| x| =00

= inf ;
A inf a(x) > 0;

lim  a(x) = a0 >0, a(x):=a(x)— ax € L5E_P(R3),
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Let p € (3,5).
Moreover we assume that a(x) and K(x) verify, respectively
(al)
| x| =00

lim a(x) =ac >0, a(x):=a(x)—ax € LSE_P(]R3),
A= |]Ir£3f a(x) > 0;

(K1)

[x| =400

lim  K(x) =0, K(x)e L?(R?); K(x)>D0.

«0O> 4Fr <=




In order to find critical levels of /, we need to look into the geometry of the
functional.
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In order to find critical levels of /, we need to look into the geometry of the
functional.
The study is carried out considering | constrained on its Nehari manifold,

N = {u e HY(R3) : |lu]?® + /R K (x)u(x)u? dx = /R a(x)|ulP*? dx}.
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In order to find critical levels of /, we need to look into the geometry of the
functional.
The study is carried out considering | constrained on its Nehari manifold,

N = {u e HY(R3) : |lu]?® + /R K (x)u(x)u? dx = /R a(x)|ulP*? dx}.

On N | turns out to be bounded from below by a positive constant.
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In order to find critical levels of /, we need to look into the geometry of the
functional.
The study is carried out considering | constrained on its Nehari manifold,

N = {u e HY(R3) : |lu]?® + /R K (x)u(x)u? dx = /R a(x)|ulP*? dx}.

On N | turns out to be bounded from below by a positive constant.
Let us define

m:=inf{l(v) : ue N} >0. (4)
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In order to find critical levels of /, we need to look into the geometry of the
functional.
The study is carried out considering | constrained on its Nehari manifold,

N = {u e HY(R3) : |lu]?® + /R K (x)u(x)u? dx = /R a(x)|ulP*? dx}.

On N | turns out to be bounded from below by a positive constant.
Let us define

m:=inf{l(v) : ue N} >0. (4)

A basic step in the study of (SP’) is a careful investigation of the behavior
of the Palais-Smale sequences for the functional /.
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u e HY(R3)

Since K(x) — 0 and a(x) — ac as |x| — 400, the problem at infinity is
given by
—Au+u=|uPtu,

(Peo)

«0O0> 4Fr «=»




Some Remarks

Since K(x) — 0 and a(x) — ax as |x| — +oo, the problem at infinity is
given by
—Au+u=|uffu, u e HY(R3) (Pso)

The solutions of (P.,) are the critical points of the functional
Iy : HY(R®) — R defined by

1
b(w) = gl = = [
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Some Remarks

Since K(x) — 0 and a(x) — ax as |x| — +oo, the problem at infinity is
given by

—Au+u=|uPtu, u € HY(R?) (Px)

The solutions of (P.,) are the critical points of the functional
Iy : HY(R®) — R defined by

1
b(w) = gl = = [

Let NV the Nehari manifold related to Iy and let us define
Moo == inf {lo(u) : v € N} > 0.
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Some Remarks

Since K(x) — 0 and a(x) — ax as |x| — +oo, the problem at infinity is
given by

—Au+u=|uPtu, u € HY(R?) (Px)

The solutions of (P.,) are the critical points of the functional
Iy : HY(R®) — R defined by

1
b(w) = gl = = [

Let NV the Nehari manifold related to Iy and let us define
Moo == inf {lo(u) : v € N} > 0.

me = (V) = (5= 27 ) V12

Hence
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Some Remarks
Since K(x) — 0 and a(x) — ax as |x| — +oo, the problem at infinity is
given by

—Au+u=|uffu, u e HY(R3) (Pso)

The solutions of (P.,) are the critical points of the functional
Iy : HY(R®) — R defined by

1
b(w) = gl = = [

Let NV the Nehari manifold related to Iy and let us define
Moo == inf {lo(u) : v € N} > 0.

me = (V) = (5= 27 ) V12

For all v, changing sign solution of (P.), there holds
I(v) > 2my. (5)
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Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,

b) Vi, (us) — 0 strongly in H*(R3).
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,

(6)
b) Vi, (us) — 0 strongly in H*(R3).
Then replacing (un)n, if necessary, with a subsequence, there exist a
solution T of (SP'), a number k € NU {0}, k functions u', ..., u* of
H(R®) and k sequences of points (y}), yh € R3, 0 < j < k such that
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,

(6)
b) Vi, (us) — 0 strongly in H*(R3).

Then replacing (un)n, if necessary, with a subsequence, there exist a

solution T of (SP'), a number k € NU {0}, k functions u', ..., u* of

H(R®) and k sequences of points (y}), yh € R3, 0 < j < k such that

(i) lyal = oo, Iyh = yil = +oo if i#j, n— +oo;
(7)
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,
b) Vi, (us) — 0 strongly in H*(R3).

Then replacing (un)n, if necessary, with a subsequence, there exist a
solution T of (SP'), a number k € NU {0}, k functions u', ..., u* of
H(R®) and k sequences of points (y}), yh € R3, 0 < j < k such that

(i) lyhl = +oo, Ivh —yil = +o0 if i #j, n— +oo;
k

(i) un— > /(- —yh) — 0, in H(R®);
/= (7)
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,
b) Vi, (us) — 0 strongly in H*(R3).

Then replacing (un)n, if necessary, with a subsequence, there exist a
solution T of (SP'), a number k € NU {0}, k functions u', ..., u* of
H(R®) and k sequences of points (y}), yh € R3, 0 < j < k such that

(i) lyhl = +oo, Ivh —yil = +o0 if i #j, n— +oo;
k

(i) un — Z W(-—yl) — @, in H}(R®);
/= . (7)
(iii) /(un) — 1(@) + > fo(t);
j=1
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Theorem
Let (un)n be a (PS) sequence of I constrained on N, i.e. u, € N and

a) I(up) is bounded,
b) Vi, (us) — 0 strongly in H*(R3).

Then replacing (un)n, if necessary, with a subsequence, there exist a
solution T of (SP'), a number k € NU {0}, k functions u', ..., u* of
H(R®) and k sequences of points (y}), yh € R3, 0 < j < k such that

(i) lyal —>:roo, Vh = yi| = +o00 if i #j, n— +oo;
(i) un— > /(- —yh) — 0, in H(R®);
/= ; (7)
(iii) /(un) — 1(@) + > fo(t);
j=1

(iv) & are non trivial weak solutions of (Px.).
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Corollary

Let (un)n be a (PS)y sequence. Then (up), is relatively compact for all
d € (0, my).

Moreover, if I(u,) — Mmoo, then either (up), is relatively compact or the
statement of previous Theorem holds with k =1, and v = U (U ground
state of (Poo)).

Granada, October 20, 2010
G.Vaira (SISSA) Nonlinear Systems

51/
85



If we assume
(a2) a(x) > ass Vx € R3, a(x) — as > 0 on a positive measure set,

the problem can be faced by a minimization argument.
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If we assume
(a2) a(x) > ass Vx € R3, a(x) — as > 0 on a positive measure set,

the problem can be faced by a minimization argument.
When (a2) holds, the problem

—Au+ u=a(x)|uPlu

admits a ground state solution, that is denoted by w, and whose energy is

mo= (2= L) wal2 < mee.
2 p+1
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If we assume

(a2) a(x) > ass Vx € R3, a(x) — as > 0 on a positive measure set,

the problem can be faced by a minimization argument.
When (a2) holds, the problem

—Au+ u=a(x)|uPlu

admits a ground state solution, that is denoted by w, and whose energy is

mo= (2= L) wal2 < mee.
2 p+1

We denote by S and S the best constants for the embedding of H(R?)
and D12(R3), respectively, in LO(R3).
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Theorem
Let (al), (a2), (K) hold. Furthermore assume either

/R K()ouUPdx < pil ()| UJP+ dx. (9)

R3

Then the problem (SP’) has a positive ground state solution.
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The functional / satisfies the (PS)y condition for all d € (mMao,2my)

«0O0> 4Fr «=»




On the contrary when

(a3) a(x) < as VxER3 A:= iﬂrg a(x) >0,

holds, the infimum of / on A cannot be achieved and the existence of a
solution is a more delicate question that is handled by using the notion of

barycenter to build a min-max level belonging to an interval of the values
of I in which the compactness holds.
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First we define the barycenter of a function u € H*(R3), u # 0.




|dea to get positive bound states

First we define the barycenter of a function u € HY(R3?), u # 0.
Setting

p(u)(x A y)|dy, p(u) € L(R?) and is continuous

2
R3)\{O} — R3 by

.
a(x)z[u(uxx) s L 0E GIEY),

we define the barycenter 5 : H!

dx€R3
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|dea to get positive bound states

First we define the barycenter of a function u € HY(R3?), u # 0.
Setting

p(u)(x A y)|dy, p(u) € L(R?) and is continuous
1 +
B(x) = [u(uxx) - maxu(xﬂ e GEY),
we define the barycenter 3 : H1(R®)\ {0} — R by

N
B(u) = — / xir(x)dx € B3,
01 Jrs

Since & has compact support, 5 is well defined. Moreover the following
properties hold:

1. B is continuous in HY(R3)\ {0};
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|dea to get positive bound states

First we define the barycenter of a function u € HY(R3?), u # 0.
Setting

p(u)(x A y)|dy, p(u) € L(R?) and is continuous
1 +
B(x) = [u(uxx) - maxu(xﬂ e GEY),
we define the barycenter 3 : H1(R®)\ {0} — R by

N
B(u) = — / xir(x)dx € B3,
01 Jrs

Since & has compact support, 5 is well defined. Moreover the following
properties hold:

1. B is continuous in HY(R3)\ {0};

2. If u is a radial function B(u) = 0;
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|dea to get positive bound states

First we define the barycenter of a function u € HY(R3?), u # 0.
Setting

p(u)(x A y)|dy, p(u) € L(R?) and is continuous
1 +
B(x) = [u(uxx) - maxu(xﬂ e GEY),
we define the barycenter 3 : H1(R®)\ {0} — R by

N
B(u) = — / xir(x)dx € B3,
01 Jrs

Since & has compact support, 5 is well defined. Moreover the following
properties hold:

1. B is continuous in HY(R3)\ {0};

2. If u is a radial function B(u) = 0;

3. For all t # 0 and for all v € H}(R3)\ {0}, B(tu) = B(u);
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|dea to get positive bound states

First we define the barycenter of a function u € HY(R3?), u # 0.
Setting

p(u)(x A y)|dy, p(u) € L(R?) and is continuous
1 +
B(x) = [u(uxx) - maxu(xﬂ e GEY),
we define the barycenter 3 : H1(R®)\ {0} — R by

N
B(u) = — / xir(x)dx € B3,
01 Jrs

Since & has compact support, 5 is well defined. Moreover the following
properties hold:

1. B is continuous in HY(R3)\ {0};

2. If u is a radial function B(u) = 0;

3. For all t # 0 and for all u € HY(R3)\ {0}, B(tu) = B(v);

4. Given z € R? and setting u,(x) = u(x — z), B(uz).= B(u) + z.
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Let us define

by :=inf{l(u) : veN, B(u) =0} (10)
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Let us define

by :=inf{l(u) : veN, B(u)=0} (10)

by > m. |




We define the operator:
MR = N
as

Mz](x) = t,U(x — 2)

where U is the positive solution of (P ) and t;, is chosen such that

Mz] e N.
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We define the operator:
MR = N
as
Mz](x) = t,U(x — 2)

where U is the positive solution of (P ) and t;, is chosen such that

Mz] e V.
Lemma

|z|ILnJ1roo I(M(z)) = M.
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Assume that K2
1+1n|Kl5 p=3
=ELIL/IAL AN YT
A P
with n = 282U 6-45-2m  hold. Then

1(lMNz]) < 2m.

(11)

(12)

«0O0> 4Fr «=»




Theorem

Let (al), (a3), (K) hold. Furthermore assume

1+n|K[3  e=3
~ 2 - opia 13
A (13)

hold. Then the problem (SP') has (at least) one positive solution.
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Proof

By the previous Lemmas, there exists p > 0 such that for all p > 5

Moo < |m|a:x I(I'[z]) < bo. (14)

In order to apply the Linking Theorem we take

Q=T(Bp0), S={veN : p(uv)=0}

We claim that S and OQ links, that is

a) 0Q NS = 0;
(15)
b) H(Q)NS£DY he H={heC(QN): h,, = id}
hold.
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Proof

(15)-a) follows at once, observing that if v € 0Q then u =T[z], |Z| = p,
and, by the properties of the barycenter map we get 5(u) = 5(I'[z]) = z.
To verify (15)-b), let consider h € H and define

T : B5(0) — R, T(z)=BohoTllz].

T is a continuous function, and, for all |z| = p, T'[z] € 9Q, hence
hoT[z] =T[z] that implies T(z) = z. By the Brower fixed point theorem
there exists z € B;(0) such that T(z) = 0 and this means that

h(I'[z]) € S. Therefore h(Q) NS # (.
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Proof

Now (14) can be written as by = ir;_fl > rg%x/. Let us define

d = inf 1(h(u)).
p2 g )
Then by (15)- b), d > by > m = m,. Moreover, taking h = id and using
Lemma 3 we deduce d < 2my,. Since, by Lemma 2, (PS) holds in
(Moo, 2my), by the Linking theorem d is a critical value of /.
This proves the existence of a non trivial solution of (SP’).
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[4 G. Cerami, G. V.,
Positive solutions for some non autonomous Schrddinger-Poisson
Systems
Journal of Differential Equations 248, no. 3 (2010), 521-543.
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[ GV,
Ground states for Schrodinger-Poisson type systems
to appear on Nonlinear Differential Equations

[ GV,
Bound states for Schréodinger-Newton type systems
preprint
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Schrédinger-Newton system with p = 2

Let us consider the problem
—Au+u— K(x)pyu = a(x)|ulu, (SN)

assuming that

(a1) | fim a(x) = >0, a(x) = alx) ~ ax € 1555 (R3);
A= |£;‘ a(x) > 0;
(K1) ‘ ‘I_im K(x) = Ko >0, n(x) = K(x) — Ky € L2(R3);

K :=inf K(x) > 0.
R3
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—Au+u— Kooéguu ol

(SN )

(O 4> <=




—Au+u— Koogz;uu = aoo|u|u,

(SN)

The problem (SN ) has a positive radial ground state w.
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—Au+u— Kooqzuu = aco|ulu,

(SN)

The problem (SN ) has a positive radial ground state w.
Let

1

4 Jr3

/ Kootsw? d —1/ aco|W|® dx
3 Jis
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It is clear that one can infer the existence of ground states solution for
(SN') under particular assumptions on K(x) and a(x).
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PROBLEM:

It is clear that one can infer the existence of ground states solution for
(SN') under particular assumptions on K(x) and a(x).
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Existence of Ground States

It is clear that one can infer the existence of ground states solution for
(SN') under particular assumptions on K(x) and a(x).

PROBLEM: Establish the existence of a bound state solution for (SA/).
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The positive solutions of (SN ) must be radially symmetric and
monotone decreasing about some fixed point.

«0O0> 4Fr «=»




All the positive solutions of (SA/.) are radially symmetric

Theorem

The positive solutions of (SN ) must be radially symmetric and
monotone decreasing about some fixed point.

The key step to prove the Theorem is to transform the differential equation
(SN ) into an integral system by virtue of the Bessel potentials.
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of the positive operator /d — A in the Sobolev space H!(IR3).

The Bessel potential Go = (/d — A)™! can be seen as the inverse operator
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Bessel Potential

The Bessel potential Go = (/d — A)™! can be seen as the inverse operator
of the positive operator /d — A in the Sobolev space H!(IR3).

For convenience, the Bessel potential is usually expressed in the convolution
form

g2(f) =82 % f>

in which the Bessel kernel g» can be determined explicitly by

1 &0 2 do
_ —n|x|2/5 »—6/4m s—1/2 90
&(x) (47T)r(1)/0 e e 0 5
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Hence we can transform the differential equation (SN’.,) into an integral
equation involving the Bessel potential G,. Indeed,

u = (-A+ 1)_1 <Kooq5uu + aoou2>

1
= (-A+1)7! [Kgo (H * u2> u+ aoouz]
X

1
= ox* [Kgo (|x| * u2> u—+ aoou2]

U=gox* (Kgovu + aoou2)
. (16)

or equivalently
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The most useful fact concerning Bessel potentials is that it can be
employed to characterize the Sobolev space W P(RR3).
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The most useful fact concerning Bessel potentials is that it can be
employed to characterize the Sobolev space W P(RR3).
Indeed we have that for all p € (1,400) that

Go(f) =g xf € Wz’p(R3), Vfe LP(R3).
By the Sobolev embedding, we obtain the estimate
1G2(F)lq < Crsslfls, Vfel(R?), (17)

inwhich 0 <1 -2 <
arguments below.

<

» =

% . The estimate (17) will be very useful in our
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Proof

For a given real number A, let us define
Yy = {x = (x1,Xx2,x3) € R3 . x> )\},
YV :={xeXy : un(x)>ulx)},
Yi={xe Xy wa(x) > v(x)},

and we denote by x* = (2\ — x1, x2, x3) the reflected point with respect to
the plane {x; = A} and denote uy(x) = u(x*) and vy(x) = v(x}).
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Decomposition of uy — v and of vy — v
For any positive solution of (SA/..), we have for all x € R3 that

()= = [ (@b =gl =) [K(vnen = vi)] oy

+/£ (gz(x —y) - &(* —y)) [ase (42 — u?)] dy.
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Decomposition of uy — v and of vy — v
For any positive solution of (SA/..), we have for all x € R3 that

()= = [ (@b =gl =) [K(vnen = vi)] oy

+/>: (gz(x —y) - &(* —y)) [ase (42 — u?)] dy.

a) =) = [ (2 ) @B0) - Oy

x—y| -y
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Step 1: By using the decomposition of uy — u we find for all x € X:

luy — Ulz,zg < G- |V>\|6,Z; luy — Ulz,z; + G- |U|2,>:; vy — V|6,>:;
+Gs - |U>\|6,)Z;" lux — U|2,):;-

(18)
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Proof

Step 1: By using the decomposition of uy — u we find for all x € X:

lux —ulose < G- walesy - lux —ulose + G- ulasy - [va — vesy

+Gs - |urlexy - |ux — ula sy (18)

Similarly, from the decomposition of vy — v, we obtain, for all x € X, that

n(x) — v(x) < 2/ !

- WUA(Y)(UA(Y) —u(y))dy. (19)

By the Hardy-Littlewood-Sobolev inequality, we deduce from (19) that

va = v]exy < Galun(ux — )]s &

v < Gafunla sy - Jun —ulasy. (20)
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Proof

Step 2: We show that for sufficient negative values of A, the set ¥ and
Y§ must be empty. In fact, the estimates above imply

lux —ulpxe < G- |valesy - |ux — ulase + G - |ulasy - [uala sy - Jux — ul.

+63 . |UA‘6’ZK . ‘U/\ —u 2’2K.

We can choose N sufficiently large such that for A < —N, we have
_ 1 = 1 - 1
Ginalexy < ¢, G-lubsg-lnlszy =40 Glulery < ¢
which implies that
lux — ul2, e =0,
and therefore § must be measure zero and hence empty.

Then also ¥ = 0.
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Proof

Step 3: Now we have that for A < —N
u(x) > ux(x), VxeXy. (21)

Thus we can start moving the plane {x; = A} continuously from A < —N
to the right as long as (21) holds. Suppose that at a Ao we have u > u),
on X, but u = uy, on X, we will show that the plane can be moved
further to the right.
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Proof

Step 3: Now we have that for A < —N
u(x) > ux(x), VxeXy. (21)

Thus we can start moving the plane {x; = A} continuously from A < —N
to the right as long as (21) holds. Suppose that at a Ao we have u > u),
on X, but u = uy, on X, we will show that the plane can be moved
further to the right.

More precisely, we prove that there exists an ¢ depending on the solution u
itself such that u > uy on X for all A in [Ag, Ao + €).
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Proof

By using the decomposition of uy — v and of vy — v and moreover by using
the estimates of their norm, we prove that when moving plane process
stops, we must have u = uy,, and uy < u on X when A < Ag.

By a translation, we may assume that u(0) = max,cgs u(x). Then it
follows that the moving plane process from any direction must stop at the
origin. Hence u must be radially symmetric and monotone decreasing in
the radial direction.
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Uniqueness of the radial solution of (SN ..)

Let us first recall the following theorem known as Newton's Theorem.

Theorem
For any radial function p = p(|x|) € L*(R3, (1 + |x|)~1dx), we have

(IxI7" % p) (r) = V(p) = Fy(r)

where

V(p) = /R pﬁt(")dx, Fo(r) = 4n /O,S (1-2) ols) s
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Since all positive solutions of (SN . )are radial, we have to show the
uniqueness of the radial solution of (SA ). By using Newton Theorem,
(SN &) can be transformed into

— Au+ K2 Fou— asou® = pu, (22)
where 1 := K2, V(u?) — 1. It is possible to show that ;> 0. We set
A(u) = K2 F2 — asou,

then (22) becomes
— Au+ A(u)u = pu. (23)

Granada, October 20, 2010 80 /
G.Vaira (SISSA) Nonlinear Systems 85



sufficiently small.

The problem (23) has a unique radial positive solution provide

d 2 is
KZ,
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Let (v,1) € H*(R3) x H2(R3) be a solution of

Av — v + Kooqzwv + KooW + 2a5owv = 0
(24)

AY + Koovw = 0.
where (w, ¢y, ) is the solution of (SN ). Then

(v,v) ESpan{M;j= 1,2,3}.
X




Remark
Suppose that v € H?(R3) satisfies the following problem

AV—V+Koo<Z~>WV+KooW/ M

dy + 2asowv = 0,
R3 x—y

then by Theorem 10 it follows that

VGSpan{aw : j:1,2,3.}.
xj
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Theorem

Let (al)-(K1) and
(H) K(x) < Koos a(x) < aso for all x € R® and as, — a(x) >0 on a
positive measure set;

hold. Then there exists (at least) one positive bound state solution of

,,max{K2, ax}
(SN) prOVIded m

is suthiciently small.
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Thank you for the attention!
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