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Physical Motivations

In Quantum Mechanics, any state of a particle in 3-dimensional space can

be described by a function

ψ(x , t) ∈ C, (x , t) ∈ R3 × R Wave Function

|ψ|2 dx

is the probability that the coordinates of the particle associated to ψ will

�nd their values in the element dx .∫
R3

|ψ|2 dx = 1 Normalization Equation
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The Schrödinger equation

ı~
∂ψ

∂t
= − ~2

2m
∆ψ + Q(x)ψ, x ∈ R3, t ∈ R

where m > 0, ~ is the Planck constant and Q : R3 → R is the time

independent potential energy of the particle at position x ∈ R3 .
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The Schrödinger equation

Case of a Single Particle

ı~
∂ψ

∂t
= − ~2

2m
∆ψ + Q(x)ψ, x ∈ R3, t ∈ R (SE)

where m > 0, ~ is the Planck constant and Q : R3 → R is the time

independent potential energy of the particle at position x ∈ R3 .
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The Schrödinger equation

Case of Many Particles

ı~
∂ψ

∂t
= − ~2

2m
∆ψ + Q(x)ψ − |ψ|p−1ψ, x ∈ R3, t ∈ R (NSE)

where m > 0, ~ is the Planck constant and Q : R3 → R is the time

independent potential energy of the particle at position x ∈ R3 , p > 1.
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The Schrödinger-Maxwell system

Let us assume now that ψ is a charged wave and we denote by q > 0 the

electric charge.

Hence, the wave ψ interacts with its own electromagnetic �eld E,H.

Following the ideas introduced in

V. Benci, D. Fortunato,

An eigenvalue problem for the Schrödinger�Maxwell equations

Top. Meth. Nonlin. Anal. 11, (1998), 283�293.

V. Benci, D. Fortunato

Solitary waves of the nonlinear Klein�Gordon equation coupled with

Maxwell equations,

Rev. Math. Phys. 14, (2002), 409�420.

we do not assume that the electromagnetic �eld is assigned.
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Unknowns:

i) The wave function ψ;

ii) The gauge potentials

A : R3 × R→ R3, φ : R3 × R→ R

related to E, H by the Maxwell equations

E := −∇φ− ∂A

∂t
, H := ∇× A.
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Standing Waves interacting with a purely electrostatic �eld

We choose:

1.

ψ(x , t) = u(x)e iωt , u(x) ∈ R, ω > 0.

that is called standing wave.

Indeed, these solutions correspond to static situations in the sense that

the density |ψ(x , t)|2 = u2(x) does not change in time.

2. A = 0.

3. φ = φ(x).
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Schrödinger-Maxwell system

Then we deal with the following system of equations:


− ~2

2m
∆u + V (x)u + qφu = |u|p−1u, x ∈ R3

(SP)
−∆φ = qu2 x ∈ R3

where q > 0 is the electric charge and V (x) = Q(x) + ~ω
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Interaction with the gravitational �eld

If a particle of mass m > 0 moves in its own gravitational �eld

↓

ı~
∂ψ

∂t
= − ~2

2m
∆ψψ − |ψ|p−1ψ, x ∈ R3, t ∈ R.
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Schrödinger-Newton system

If we look for standing waves ψ(x , t) = u(x)e iωt then we have to deal with

the following system of equations:
− ~2

2m
∆u + ω~u − Qu = |u|p−1u, x ∈ R3

(SN )
−∆Q = u2 x ∈ R3
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Notations:

Here:

H1(R3) is the usual Sobolev space endowed with the standard scalar

product and norm

(u, v) =

∫
R3

[∇u∇v + uv ]dx ; ‖u‖2 =

∫
R3

[
|∇u|2 + u2

]
dx .

D1,2(R3) is the completion of C∞
0

(R3) with respect to the norm

‖u‖2D1,2 =

∫
R3

|∇u|2dx .
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First of all we look for solution

(u, φ) ∈ H1(R3)× D1,2(R3)

for the problem (SP).
We de�ne

ε2 :=
~2

2m
.

Existence Results for ε > 0 small;

Existence Results for ε = 1.
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Variational Framework

It is well-known that, for all u ∈ H1(R3), the Poisson equation

−∆φ = K (x)u2

has a unique solution φu ∈ D1,2(R3) given by

φu(x) =
1

|x |
∗ Ku2 =

∫
R3

K (y)

|x − y |
u2(y) dy .

G.Vaira (SISSA) Nonlinear Systems
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Hence, inserting φu into the �rst equation of (SP), we deal with the

equivalent problem

−ε2∆u + V (x)u + K (x)φuu = |u|p−1u, (SP ′)

Remark

u ∈ H1(R3) is a solution of (SP ′) =⇒ (u, φu) ∈ H1(R3)× D1,2(R3) is a

solution of (SP)
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Semiclassical States

The positive solutions uε ∈ H1(R3) of (SP ′) founded for ε small are called

Semiclassical States.

Interesting classes of semiclassical states are those which exihibit a

concentration behavior around one or more special point.

These solutions are called Spikes.

De�nition

A solution uε of (SP ′) concentrates at x0 ∈ R3 (as ε→ 0) provided

∀ δ > 0, ∃ε0 > 0, R > 0 : uε(x) ≤ δ, ∀ |x − x0| ≥ εR, ε < ε0
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Assumptions

(V1) V ∈ C∞(R3,R), V and its derivatives are uniformly bounded.

(V2) inf
R3

V > 0.

(V3) There exists x0 ∈ R3 such that ∇V (x0) = 0.

(K1) K ∈ C∞(R3,R), K and its derivatives are uniformly bounded.

(K2) K ≥ 0.
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Theorem (I. Ianni, G. V.)

Let p ∈ (1, 5) and (V1), (V2), (V3), (K1), (K2) hold.

In addition, assume that

(V4) x0 ∈ R3 is a non-degenerate local minimum or maximum for V ,

namely D2V (x0) is either positive or negative-de�nite.

Then for ε > 0 small, (SP ′) has a solution uε that concentrates at x0.
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Let for simplicity x0 = 0 and V (0) = 1.

In (SP ′) we make a change of variable x 7−→ εx , then we deal with the

problem

−∆u + V (εx)u + ε2K (εx)φε,uu = |u|p−1u, (SPε).

The solutions of (SPε) are the critical points of the C 2− functional

Iε : H1(R3)→ R de�ned as

Iε(u) =
1

2

∫
R3

(
|∇u|2 + V (εx)u2

)
dx +

ε2

4

∫
R3

K (εx)φε,uu
2 dx

− 1

p + 1

∫
R3

|u|p+1 dx
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Outline of the proofs

To prove the concentration result we have used a Perturbation Method,

due to Ambrosetti and Badiale.

In other words we consider the functional Iε as

Iε(u) = I0(u) + G (ε, u)

where the unperturbed functional I0(u), obtained for ε = 0, is

I0(u) =
1

2
‖u‖2 − 1

p + 1

∫
R3

|u|p+1dx

while the perturbation is

G (ε, u) =
1

2

∫
R3

[V (εx)− 1]u2dx +
ε2

4

∫
R3

K (εx)φε,uu
2dx .
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The critical points of the unperturbed problem are the solutions of the

well-known problem

−∆u + u = |u|p−1u, u ∈ H1(R3)

which has a positive, ground state, solution U ∈ H1(R3), radially
symmetric about the origin, unique up to translations, decaying

exponentially, together its derivatives, as |x | → +∞.
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Lyapunov-Schmidt reduction

We de�ne the manifold of �approximate" solutions of the problem: �x

ξ̄ > 0 and let

Zε :=
{
zξ := U(· − ξ) : ξ ∈ R3, |ξ| ≤ ξ̄

}
.

Then for every zξ ∈ Zε, we de�ne W =
(
TzξZε

)⊥
and P : H1(R3)→W

the orthogonal projection onto W . Our approach is to �nd a pair zξ ∈ Zε,
w ∈W such that I ′ε(zξ + w) = 0, or equivalently:

PI ′ε(zξ + w) = 0,

(Id − P)I ′ε(zξ + w) = 0

The �st equation above is called auxiliary equation, and the second one

receives the name of bifurcation equation.
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Abstract Result

Proposition

Consider a Hilbert space H. Let z ∈ H and T ∈ C 1(H,H). Suppose that

for some �xed δ > 0, there holds:

(A1) ‖T (z)‖H ≤ δ;
(A2) T ′(z) : H → H is invertible and ‖(T ′(z))−1‖H ≤ c , c > 0;

Take ρ ≥ 2c and de�ne:

B = {u ∈ H : ‖u‖H ≤ ρδ} .

We further assume that

(A3) ‖T ′(z + u)− T ′(z)‖H < 1

ρ , u ∈ B .

Then there exists a unique u ∈ B such that T (z + u) = 0.
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The auxiliary Equation

First we �nd a solution w ∈W of the auxiliary equation proving

‖PI ′ε(zξ)‖ ≤ Cε2, zξ ∈ Zε;
PI ′′ε (zξ) is invertible and such that ‖[PI ′′ε (zξ)]−1‖ ≤ C̄ ;

‖PI ′′ε (zξ + u)−PI ′′ε (zξ)‖ → 0 for all u ∈ B =
{
w ∈W : ‖w‖ ≤ C1ε

2
}
.

Then there exists a solution w = wε,z ∈W such that ‖wε,z‖ ≤ Cε2.
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The bifurcation equation

Now we �nd a solution for the bifurcation equation among the set of

solutions of the auxiliary equation, which is:

Z̄ =
{
zξ + wε,zξ : zξ ∈ Zξ

}
.

By the Implicit Function Theorem it is easy to check that Z̄ is a C 1

manifold. Moreover, it is well-known that Z̄ is a natural constraint for Iε
for ε small. In other words, critical points of Iε|Z̄ are solutions of the

bifurcation equation, and hence solutions of (SPε).
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The reduced functional

So, let us de�ne the reduced functional as the restriction of the functional

Iε to the natural constraint Z̄, namely Φε : Bξ̄(0) ⊂ R3 → R,

Φε(ξ) = Iε(zξ + wε,zξ)

We look for critical points of Φε.

Using the information on ‖wε,zξ‖, we will be able to �nd an expansion of

Φε(ξ).
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Expansion in the non-degenerate case

Proposition (non-degenerate case)

Φε(ξ) = C0 + ε2Γ1(ξ) + o(ε2), for |ξ| ≤ ξ̄

where

C0 = I0(U);

Γ1(ξ) = C1 + C2〈D2V (0)ξ, ξ〉;

C1 =
1

4

∫
R3

〈D2V (0)x , x〉U2(x)dx +
K (0)2

4

∫
R3

∫
R3

U2(y)U2(x)

|x − y |
dydx ;

C2 =
1

4

∫
R3

U2(x)dx .
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Lemma

Φε(ξ) = C0 + εβΓ(ξ) + o(εβ), |ξ| ≤ ξ̄

and assume that ξ = 0 is a non-degenerate minimum (or maximum) for Γ.
Then Φε has a minimum (or maximum) in some ξε such that ξε → 0 as

ε→ 0.

In conclusion, recalling the change of variable

vε(x) := uε

(x
ε

)
∼ zξε

(x
ε

)
= U

(x
ε
− ξε

)
,

is a solution of (SP ′) which concentrates near the critical point 0.
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A Multiplicity Result

By using the same technique outlined before one can also infer the

existence of multiple solutions.

Let, for simplicity, the problem

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3).

If V has a �nite collection of non-degenerate critical points xi , then we

obtain a spike solution around each critical point.

However, the bumps are well separated, namely the e�ect of one bump on

another bump is neglected.

D. Ruiz, G. V. ,

Cluster solutions for the Schrödinger-Poisson-Slater problem around a

local minimum of the potential,

to appear on Rev. Mat. Iberoamericana.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 29 /

85



A Multiplicity Result

By using the same technique outlined before one can also infer the

existence of multiple solutions.

Let, for simplicity, the problem

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3).

If V has a �nite collection of non-degenerate critical points xi , then we

obtain a spike solution around each critical point.

However, the bumps are well separated, namely the e�ect of one bump on

another bump is neglected.

D. Ruiz, G. V. ,

Cluster solutions for the Schrödinger-Poisson-Slater problem around a

local minimum of the potential,

to appear on Rev. Mat. Iberoamericana.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 29 /

85



A Multiplicity Result

By using the same technique outlined before one can also infer the

existence of multiple solutions.

Let, for simplicity, the problem

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3).

If V has a �nite collection of non-degenerate critical points xi , then we

obtain a spike solution around each critical point.

However, the bumps are well separated, namely the e�ect of one bump on

another bump is neglected.

D. Ruiz, G. V. ,

Cluster solutions for the Schrödinger-Poisson-Slater problem around a

local minimum of the potential,

to appear on Rev. Mat. Iberoamericana.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 29 /

85



A Multiplicity Result

By using the same technique outlined before one can also infer the

existence of multiple solutions.

Let, for simplicity, the problem

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3).

If V has a �nite collection of non-degenerate critical points xi , then we

obtain a spike solution around each critical point.

However, the bumps are well separated, namely the e�ect of one bump on

another bump is neglected.

D. Ruiz, G. V. ,

Cluster solutions for the Schrödinger-Poisson-Slater problem around a

local minimum of the potential,

to appear on Rev. Mat. Iberoamericana.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 29 /

85



A Multiplicity Result

By using the same technique outlined before one can also infer the

existence of multiple solutions.

Let, for simplicity, the problem

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3).

If V has a �nite collection of non-degenerate critical points xi , then we

obtain a spike solution around each critical point.

However, the bumps are well separated, namely the e�ect of one bump on

another bump is neglected.

D. Ruiz, G. V. ,

Cluster solutions for the Schrödinger-Poisson-Slater problem around a

local minimum of the potential,

to appear on Rev. Mat. Iberoamericana.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 29 /

85



Cluster Solutions

In a work of X. Kang and J. Wei, the authors consider the nonlinear

Schrödinger equation

−ε2∆u + V (x)u = |u|p−1u, x ∈ R3

proving the existence of a cluster solution around a local maximum of V

and non-existence of a cluster solution around a local minimum of V .
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Case of Schrödinger-Poisson problem

Our problem is now:

−ε2∆u + V (x)u + φuu = |u|p−1, u ∈ H1(R3)
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Assumptions

(V1) V has a local strict minimum point in P0, namely there exists a

bounded open set U such that P0 ∈ U and

V (P0) = min
x∈Ū

V (x) < V (P), ∀ P ∈ U \ {P0}

Up to a translation and dilatation, we can assume P0 = 0, V (0) = 1.

(V2) V (x) = 1 + |g(x)|α for any x ∈ U , where g : U → R is a C 2,1

function and α > 2.

In particular, there holds:

(V2') V (x) ≤ 1 + C |x |α for x ∈ U and some C > 0.

Remark

Observe that under the above conditions the local minimum must be

degenerate. We point out that conditions (V1)-(V2') are su�cient for most

of our arguments. We need condition (V2) for technical reasons, to be able

to rule out possible undesired oscillations of the derivatives of V near 0.
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Theorem (D. Ruiz, G. V.)

Assume that V satis�es (V1) and (V2) and suppose p ∈ (1, 5). Then for

any positive integer K ∈ Z, there exists εK > 0 such that for any ε < εK
there exists a positive solution uε of (SP ′) with K bumps converging to 0.

More speci�cally, there exists Qε
1
, . . .Qε

k ∈ R3 such that:

1 Qε
i → 0, ε−1|Qε

i | → +∞ as ε→ 0.

2 De�ning ũε(x) = uε(εx), we have that
ũε(x) =

∑K
i=1

U(x − ε−1Qε
i ) + o(1), as ε→ 0.
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The Lyapunov-Schmidt reduction will be made, in this case, around an

appropriate set of �approximating solutions".

For any K ∈ N, we de�ne

Λε =
{
P ∈ R3K : |Pi − Pj | ≥ ε

2−α
α+1

+δ, i 6= j ,

V (εPi ) ≤ 1 + ε
3α
α+1
−δ, εPi ∈ U

}
where δ > 0 is chosen small enough so that 3α

α+1
− δ > 2 (this is possible

since α > 2). Observe that 2−α
α+1

+ δ < 0 and Λε is not empty for ε small

enough.
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Fix P = (P1, ...,PK ) ∈ Λε. Setting zPi
(x) = U(x − Pi ), we de�ne the

manifold of �approximate solutions":

Z =

{
zP(x) =

K∑
i=1

zPi
(x) : P ∈ Λε

}
.

We �rst prove the existence of a solution of the auxiliary equation, then we

�nd an expansion for the reduced functional.
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The reduced functional

Φε(P) = C0 + ε2C1 +C2

K∑
i=1

V (εPi ) +C3ε
2
∑
i 6=j

1

|Pi − Pj |
+o(ε

3α
α+1
−δ). (1)

Proposition

For ε su�ciently small, the following minimization problem

min {Φε(P) : P ∈ Λε} (2)

has a solution Pε ∈ Λε.
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In�nitely Many Solutions for Schrödinger-Poisson problem

Let us consider the problem
−∆u + u + K (x)φu = |u|p−1u, x ∈ R3,

(SP)
−∆φ = K (x)u2, x ∈ R3,

where p ∈ (1, 5) and K : R3 → R is a non-negative bounded function.

We assume that K is a radial function, that is K (x) = K (|x |) = K (r)
satisfying the following condition:

(K) There are constants a > 0, m > 3

2
, θ > 0 such that

K (r) =
a

rm
+ O

(
1

rm+θ

)
,

as r → +∞.
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Again, the problem (SP) can be reduced into a single equation:

−∆u + u + K (|x |)φuu = |u|p−1u, u ∈ H1(R3), (SP ′)

Theorem

If K (x) satis�es (K), then the problem (SP ′) has in�nitely many non-radial

positive solutions.
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To prove the Theorem we construct solutions with large number of bumps

near in�nity.

In fact, since K (r)→ 0 as r → +∞, the solutions of (SP ′) can be

approximated by using the solution U of the limit problem
−∆u + u = up, in R3,
u > 0, in R3,
u(x)→ 0, as |x | → +∞.

(3)
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Construction

For any positive integer k , let us de�ne

Pj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
∈ R3, j = 1, . . . , k ,

with r ∈ Sk :=
[(

m
π − β

)
k log k ,

(
m
π + β)k log k

]
for some β > 0

su�ciently small and

zr (x) =
k∑

j=1

UPj
(x),

where UPj
(·) := U(· − Pj).
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If x = (x1, x2, x3) ∈ R3, we set

Hs =

u ∈ H1(R3)

u is even in x2, x3;
u(r cos θ, r sin θ, x3) =

= u
(
r cos

(
θ + 2πj

k

)
, r sin

(
θ + 2πj

k

)
, x3

)
j = 1, . . . , k − 1

 .

We remark that if u ∈ Hs , then φu ∈ Ds , where

Ds =

φ ∈ D1,2(R3)

φ is even in x2, x3;
φ(r cos θ, r sin θ, x3) =

= φ
(
r cos

(
θ + 2πj

k

)
, r sin

(
θ + 2πj

k

)
, x3

)
j = 1, . . . , k − 1

 ;

Finally, let us de�ne

Ωj :=

{
x = (x ′, x3) ∈ R2 × R : 〈 x

′

|x ′|
,
Pj
|Pj |
〉 ≥ cos

π

k

}
.
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Figure: Position of the multi-bumps solutions
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Lyapunov-Schmidt reduction

The manifold of the approximate solutions is now given by

Z := {zr : r ∈ Sk}
First we �nd the solution of the auxiliary equation w .

Then we study the remaining �nite dimensional equation.

In this case the reduced functional is given by

F (r) = k

[
C0 +

B1

r2m
+

B2k log k

r2m+1
− B3

k∑
i=2

∫
R3

Up
P1
UPi

dx + O

(
1

k2m+σ

)]
,

The problem

max {F (r) : r ∈ Sk}
has a solution since F is continuous on a compact set.

Then we show that this maximum, rk , is an interior point of Sk .

As a consequence, we can conclude that zrk + w(rk) is a solution of (SP ′).
This prove the existence of in�nitely many non-trivial non radial solutions

of (SP ′).
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P. d'Avenia, A. Pomponio, G. V.,

Existence of in�nitely many positive solutions for Schrödinegr-Poisson

system,preprint.
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Existence of Ground and Bound States for (SP)

−∆u + u + K (x)φu(x)u = a(x)|u|p−1u, (SP ′)

where a : R3 → R.
The solution of (SP ′) are the critical points of I ∈ C 2(H1(R3),R) de�ned

as

I (u) =
1

2
‖u‖2 +

1

4

∫
R3

K (x)φu(x)u2dx − 1

p + 1

∫
R3

a(x)|u|p+1dx .
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Dealing with I , one has to face various di�culties:

a) The competing e�ect of the nonlocal term with the nonlinear term

gives rise to very di�erent situations as p varies in the interval (1, 5);

b) The lack of compactness of the embedding of H1(R3) in the Lebesgue

spaces Lq(R3), q ∈ (2, 6), prevents from using the variational

techniques in a standard way.

Remark

b) can be avoided, for example, restricting I to the subspace of H1(R3)
consisting of radially symmetric functions.
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Assumptions

Let p ∈ (3, 5).
Moreover we assume that a(x) and K (x) verify, respectively

(a1) lim
|x |→+∞

a(x) = a∞ > 0, α(x) := a(x)− a∞ ∈ L
6

5−p (R3);

A := inf
R3

a(x) > 0;

(K1) lim
|x |→+∞

K (x) = 0, K (x) ∈ L2(R3); K (x) ≥ 0.
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In order to �nd critical levels of I , we need to look into the geometry of the

functional.

The study is carried out considering I constrained on its Nehari manifold,

N :=

{
u ∈ H1(R3) : ‖u‖2 +

∫
R3

K (x)φu(x)u2 dx =

∫
R3

a(x)|u|p+1 dx

}
.

On N I turns out to be bounded from below by a positive constant.

Let us de�ne

m := inf{I (u) : u ∈ N} > 0. (4)

A basic step in the study of (SP ′) is a careful investigation of the behavior

of the Palais-Smale sequences for the functional I .
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Some Remarks

Since K (x)→ 0 and a(x)→ a∞ as |x | → +∞, the problem at in�nity is

given by

−∆u + u = |u|p−1u, u ∈ H1(R3) (P∞)

The solutions of (P∞) are the critical points of the functional

I0 : H1(R3)→ R de�ned by

I0(u) :=
1

2
‖u‖2 − 1

p + 1

∫
R3

|u|p+1 dx .

Let N∞ the Nehari manifold related to I0 and let us de�ne

m∞ := inf {I0(u) : u ∈ N∞} > 0.

Hence

m∞ = I0(U) =

(
1

2
− 1

p + 1

)
‖U‖2

For all v , changing sign solution of (P∞), there holds

I0(v) ≥ 2m∞. (5)
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Theorem

Let (un)n be a (PS) sequence of I constrained on N , i.e. un ∈ N and

a) I (un) is bounded ;

b) ∇I|N (un)→ 0 strongly in H1(R3).
(6)

Then replacing (un)n, if necessary, with a subsequence, there exist a

solution ū of (SP ′), a number k ∈ N ∪ {0}, k functions u1, ..., uk of

H1(R3) and k sequences of points (y jn), y jn ∈ R3, 0 ≤ j ≤ k such that

(i) |y jn| → +∞, |y jn − y in| → +∞ if i 6= j , n→ +∞;

(ii) un −
k∑

j=1

uj(· − y jn) −→ ū, in H1(R3);

(iii) I (un)→ I (ū) +
k∑

j=1

I0(uj);

(iv) uj are non trivial weak solutions of (P∞).

(7)
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Corollary

Let (un)n be a (PS)d sequence. Then (un)n is relatively compact for all

d ∈ (0,m∞).
Moreover, if I (un)→ m∞, then either (un)n is relatively compact or the

statement of previous Theorem holds with k = 1, and u1 = U (U ground

state of (P∞)).
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If we assume

(a2) a(x) ≥ a∞ ∀x ∈ R3, a(x)− a∞ > 0 on a positive measure set,

the problem can be faced by a minimization argument.

When (a2) holds, the problem

−∆u + u = a(x)|u|p−1u

admits a ground state solution, that is denoted by wa and whose energy is

ma =

(
1

2
− 1

p + 1

)
‖wa‖2 < m∞.

We denote by S and S̄ the best constants for the embedding of H1(R3)
and D1,2(R3), respectively, in L6(R3).
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Theorem

Let (a1), (a2), (K) hold. Furthermore assume either

|K |22 <
mϑ
∞ −ma

ϑ

σm1+ϑ
a

, (8)

with ϑ = p−3
p+1

and σ = 2(p+1)
p−1 S̄−2S−4, or∫

R3

K (x)φUU
2dx <

4

p + 1

∫
R3

α(x)|U|p+1dx . (9)

Then the problem (SP ′) has a positive ground state solution.
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Corollary

The functional I satis�es the (PS)d condition for all d ∈ (m∞, 2m∞)
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On the contrary when

(a3) a(x) ≤ a∞ ∀x ∈ R3, A := inf
R3

a(x) > 0,

holds, the in�mum of I on N cannot be achieved and the existence of a

solution is a more delicate question that is handled by using the notion of

barycenter to build a min-max level belonging to an interval of the values

of I in which the compactness holds.
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Idea to get positive bound states

First we de�ne the barycenter of a function u ∈ H1(R3), u 6= 0.

Setting

µ(u)(x) =
1

|B1(0)|

∫
B1(x)

|u(y)|dy , µ(u) ∈ L∞(R3) and is continuous

û(x) =

[
µ(u)(x)− 1

2
maxµ(x)

]+

, û ∈ C0(R3);

we de�ne the barycenter β : H1(R3) \ {0} → R3 by

β(u) =
1

|û|1

∫
R3

xû(x)dx ∈ R3.

Since û has compact support, β is well de�ned. Moreover the following

properties hold:

1. β is continuous in H1(R3) \ {0};
2. If u is a radial function β(u) = 0;

3. For all t 6= 0 and for all u ∈ H1(R3) \ {0}, β(tu) = β(u);
4. Given z ∈ R3 and setting uz(x) = u(x − z), β(uz) = β(u) + z .
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Since û has compact support, β is well de�ned. Moreover the following

properties hold:

1. β is continuous in H1(R3) \ {0};
2. If u is a radial function β(u) = 0;

3. For all t 6= 0 and for all u ∈ H1(R3) \ {0}, β(tu) = β(u);
4. Given z ∈ R3 and setting uz(x) = u(x − z), β(uz) = β(u) + z .

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 56 /

85



Idea to get positive bound states

First we de�ne the barycenter of a function u ∈ H1(R3), u 6= 0.

Setting

µ(u)(x) =
1

|B1(0)|

∫
B1(x)

|u(y)|dy , µ(u) ∈ L∞(R3) and is continuous
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Since û has compact support, β is well de�ned. Moreover the following

properties hold:

1. β is continuous in H1(R3) \ {0};
2. If u is a radial function β(u) = 0;

3. For all t 6= 0 and for all u ∈ H1(R3) \ {0}, β(tu) = β(u);
4. Given z ∈ R3 and setting uz(x) = u(x − z), β(uz) = β(u) + z .

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 56 /

85



Let us de�ne

b0 := inf{I (u) : u ∈ N , β(u) = 0}. (10)

Lemma

b0 > m.
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We de�ne the operator:

Γ : R3 → N

as

Γ[z ](x) = tzU(x − z)

where U is the positive solution of (P∞) and tz is chosen such that

Γ[z ] ∈ N .

Lemma

lim
|z|→+∞

I (Γ(z)) = m∞.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 58 /

85



We de�ne the operator:

Γ : R3 → N

as

Γ[z ](x) = tzU(x − z)

where U is the positive solution of (P∞) and tz is chosen such that

Γ[z ] ∈ N .

Lemma

lim
|z|→+∞

I (Γ(z)) = m∞.

G.Vaira (SISSA) Nonlinear Systems
Granada, October 20, 2010 58 /

85



Lemma

Assume that
1 + η|K |2

2

A
< 2

p−3
p+1 (11)

with η = 2(p+1)
p−1 S−4S̄−2m∞, hold. Then

I (Γ[z ]) < 2m∞. (12)
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Theorem

Let (a1), (a3), (K) hold. Furthermore assume

1 + η|K |2
2

A
< 2

p−3
p+1 (13)

hold. Then the problem (SP ′) has (at least) one positive solution.
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Proof

By the previous Lemmas, there exists ρ̄ > 0 such that for all ρ ≥ ρ̄

m∞ < max
|z|=ρ

I (Γ[z ]) < b0. (14)

In order to apply the Linking Theorem we take

Q = Γ(B̄ρ̄(0)), S = {u ∈ N : β(u) = 0}.

We claim that S and ∂Q links, that is

a) ∂Q ∩ S = ∅;

b) h(Q) ∩ S 6= ∅ ∀ h ∈ H = {h ∈ C(Q,N ) : h|∂Q = id}
(15)

hold.
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Proof

(15)-a) follows at once, observing that if u ∈ ∂Q then u = Γ[z̄ ], |z̄ | = ρ̄,
and, by the properties of the barycenter map we get β(u) = β(Γ[z̄ ]) = z̄ .

To verify (15)-b), let consider h ∈ H and de�ne

T : B̄ρ̄(0)→ R3, T (z) = β ◦ h ◦ Γ[z ].

T is a continuous function, and, for all |z | = ρ̄, Γ[z ] ∈ ∂Q, hence

h ◦ Γ[z ] = Γ[z ] that implies T (z) = z . By the Brower �xed point theorem

there exists z ∈ Bρ̄(0) such that T (z) = 0 and this means that

h(Γ[z ]) ∈ S . Therefore h(Q) ∩ S 6= ∅.
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Proof

Now (14) can be written as b0 = inf
S
I > max

∂Q
I . Let us de�ne

d := inf
h∈H

max
u∈Q

I (h(u)).

Then by (15)- b), d ≥ b0 > m ≡ m∞. Moreover, taking h = id and using

Lemma 3 we deduce d < 2m∞. Since, by Lemma 2, (PS) holds in

(m∞, 2m∞), by the Linking theorem d is a critical value of I .

This proves the existence of a non trivial solution of (SP ′).
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Schrödinger-Newton system with p = 2

Let us consider the problem

−∆u + u − K (x)φuu = a(x)|u|u, (SN )

assuming that

(a1) lim
|x |→+∞

a(x) = a∞ > 0, α(x) := a(x)− a∞ ∈ L
6

5−p (R3);

A := inf
R3

a(x) > 0;

(K1) lim
|x |→+∞

K (x) = K∞ > 0, η(x) := K (x)− K∞ ∈ L2(R3);

K := inf
R3

K (x) > 0.
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The problem at in�nity

−∆u + u − K∞φ̃uu = a∞|u|u, (SN∞)

Proposition

The problem (SN∞) has a positive radial ground state w̄ .

Let

c̄ = I∞(w̄) =
1

2
‖w̄‖2 +

1

4

∫
R3

K∞φ̃w̄ w̄
2 dx − 1

3

∫
R3

a∞|w̄ |3 dx
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Existence of Ground States

It is clear that one can infer the existence of ground states solution for

(SN ) under particular assumptions on K (x) and a(x).
PROBLEM: Establish the existence of a bound state solution for (SN ).
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All the positive solutions of (SN∞) are radially symmetric

Theorem

The positive solutions of (SN∞) must be radially symmetric and

monotone decreasing about some �xed point.

The key step to prove the Theorem is to transform the di�erential equation

(SN∞) into an integral system by virtue of the Bessel potentials.
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Bessel Potential

The Bessel potential G2 = (Id −∆)−1 can be seen as the inverse operator

of the positive operator Id −∆ in the Sobolev space H1(R3).
For convenience, the Bessel potential is usually expressed in the convolution

form

G2(f ) = g2 ∗ f ,

in which the Bessel kernel g2 can be determined explicitly by

g2(x) =
1

(4π)Γ(1)

∫ ∞
0

e−π|x |
2/δe−δ/4πδ−1/2

dδ

δ
.
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Hence we can transform the di�erential equation (SN ′∞) into an integral

equation involving the Bessel potential G2. Indeed,

u = (−∆ + 1)−1
(
K∞φ̃uu + a∞u

2

)
= (−∆ + 1)−1

[
K 2
∞

(
1

|x |
∗ u2

)
u + a∞u

2

]
= g2 ∗

[
K 2
∞

(
1

|x |
∗ u2

)
u + a∞u

2

]
or equivalently 

u = g2 ∗
(
K 2
∞vu + a∞u

2
)

v =
1

|x |
∗ u2.

(16)
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The most useful fact concerning Bessel potentials is that it can be

employed to characterize the Sobolev space W k,p(R3).
Indeed we have that for all p ∈ (1,+∞) that

G2(f ) = g2 ∗ f ∈W 2,p(R3), ∀ f ∈ Lp(R3).

By the Sobolev embedding, we obtain the estimate

|G2(f )|q ≤ Cr ,s,3|f |s , ∀ f ∈ Ls(R3), (17)

in which 0 ≤ 1

s
− 2

3
≤ 1

q
≤ 1

s
. The estimate (17) will be very useful in our

arguments below.
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Proof

For a given real number λ, let us de�ne

Σλ :=
{
x = (x1, x2, x3) ∈ R3 : x1 ≥ λ

}
,

Σu
λ := {x ∈ Σλ : uλ(x) > u(x)} ,

Σv
λ := {x ∈ Σλ : vλ(x) > v(x)} ,

and we denote by xλ = (2λ− x1, x2, x3) the re�ected point with respect to

the plane {x1 = λ} and denote uλ(x) = u(xλ) and vλ(x) = v(xλ).
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Decomposition of uλ − u and of vλ − v

For any positive solution of (SN∞), we have for all x ∈ R3 that

uλ(x)− u(x) =

∫
Σλ

(
g2(x − y)− g2(xλ − y)

) [
K 2
∞(vλuλ − vu)

]
dy

+

∫
Σλ

(
g2(x − y)− g2(xλ − y)

) [
a∞(u2λ − u2)

]
dy .

vλ(x)− v(x) =

∫
Σλ

(
1

|x − y |
− 1

|xλ − y |

)
(u2λ(y)− u2(y))dy .
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Proof

Step 1: By using the decomposition of uλ − u we �nd for all x ∈ Σλ:

|uλ − u|2,Σu
λ
≤ C̄1 · |vλ|6,Σu

λ
· |uλ − u|2,Σu

λ
+ C̄2 · |u|2,Σv

λ
· |vλ − v |6,Σv

λ

+C̄3 · |uλ|6,Σu
λ
· |uλ − u|2,Σu

λ
. (18)

Similarly, from the decomposition of vλ − v , we obtain, for all x ∈ Σλ, that

vλ(x)− v(x) ≤ 2

∫
Σu
λ

1

|x − y |
uλ(y)(uλ(y)− u(y))dy . (19)

By the Hardy-Littlewood-Sobolev inequality, we deduce from (19) that

|vλ − v |6,Σv
λ
≤ C4|uλ(uλ − u)| 6

5
,Σv
λ
≤ C̄4|uλ|3,Σv

λ
· |uλ − u|2,Σv

λ
. (20)
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Proof

Step 2: We show that for su�cient negative values of λ, the set Σu
λ and

Σv
λ must be empty. In fact, the estimates above imply

|uλ − u|2,Σu
λ
≤ C̄1 · |vλ|6,Σu

λ
· |uλ − u|2,Σu

λ
+ C̄5 · |u|2,Σv

λ
· |uλ|3,Σv

λ
· |uλ − u|2,Σv

λ

+C̄3 · |uλ|6,Σu
λ
· |uλ − u|2,Σu

λ
.

We can choose N su�ciently large such that for λ ≤ −N, we have

C̄1|vλ|6,Σu
λ
≤ 1

6
, C̄5 · |u|2,Σv

λ
· |uλ|3,Σv

λ
≤ 1

6
, C̄3|uλ|6,Σu

λ
≤ 1

6
,

which implies that

|uλ − u|2,Σu
λ

= 0,

and therefore Σu
λ must be measure zero and hence empty.

Then also Σv
λ = ∅.
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Proof

Step 3: Now we have that for λ ≤ −N

u(x) ≥ uλ(x), ∀ x ∈ Σλ. (21)

Thus we can start moving the plane {x1 = λ} continuously from λ ≤ −N
to the right as long as (21) holds. Suppose that at a λ0 we have u ≥ uλ0
on Σλ0 , but u 6≡ uλ0 on Σλ0 , we will show that the plane can be moved

further to the right.

More precisely, we prove that there exists an ε depending on the solution u

itself such that u ≥ uλ on Σλ for all λ in [λ0, λ0 + ε).
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Proof

By using the decomposition of uλ − u and of vλ − v and moreover by using

the estimates of their norm, we prove that when moving plane process

stops, we must have u ≡ uλ0 , and uλ ≤ u on Σλ when λ < λ0.
By a translation, we may assume that u(0) = maxx∈R3 u(x). Then it

follows that the moving plane process from any direction must stop at the

origin. Hence u must be radially symmetric and monotone decreasing in

the radial direction.
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Uniqueness of the radial solution of (SN∞)

Let us �rst recall the following theorem known as Newton's Theorem.

Theorem

For any radial function ρ = ρ(|x |) ∈ L1(R3, (1 + |x |)−1dx), we have(
|x |−1 ∗ ρ

)
(r) = V (ρ)− Fρ(r)

where

V (ρ) =

∫
R3

ρ(|x |)
|x |

dx , Fρ(r) = 4π

∫ r

0

s
(
1− s

r

)
ρ(s) ds.
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Since all positive solutions of (SN∞)are radial, we have to show the

uniqueness of the radial solution of (SN∞). By using Newton Theorem,

(SN∞) can be transformed into

−∆u + K 2
∞Fu2u − a∞u

2 = µu, (22)

where µ := K 2
∞V (u2)− 1. It is possible to show that µ > 0. We set

A(u) := K 2
∞Fu2 − a∞u,

then (22) becomes

−∆u + A(u)u = µu. (23)
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Proposition

The problem (23) has a unique radial positive solution provided a∞
K2
∞

is

su�ciently small.
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Non-degeneracy condition

Theorem

Let (v , ψ) ∈ H2(R3)× H2(R3) be a solution of ∆v − v + K∞φ̃wv + K∞wψ + 2a∞wv = 0

∆ψ + K∞vw = 0.

(24)

where (w , φ̃w ) is the solution of (SN∞). Then

(v , ψ) ∈ span

{
∂(w , φ̃w )

∂xj
; j = 1, 2, 3

}
.
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Remark

Suppose that v ∈ H2(R3) satis�es the following problem

∆v − v + K∞φ̃wv + K∞w

∫
R3

K∞v(y)w(y)

|x − y |
dy + 2a∞wv = 0,

then by Theorem 10 it follows that

v ∈ span

{
∂w

∂xj
: j = 1, 2, 3.

}
.
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Theorem

Let (a1)-(K1) and

(H) K (x) ≤ K∞; a(x) ≤ a∞ for all x ∈ R3 and a∞ − a(x) > 0 on a

positive measure set;

hold. Then there exists (at least) one positive bound state solution of

(SN ) provided
max{K 2

∞, a∞}
min{K2,A}

is su�ciently small.
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Thank you for the attention!
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