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CHAPTER 1

Existence with regular data in the linear case

Before stating and proving the existence theorem for linear elliptic
equations, we need some tools.

1. Minimization in Banach spaces
Let E be a Banach space, and let J : E — R be a functional.

DEFINITION 1.1. A functional J : E — R is said to be weakly lower
semicontinuous if

u, ~u = J(u) <liminf J(uy,).

n—-+4oo
DEFINITION 1.2. A functional J : E — R is said to be coercive if

lim  J(u) = +o0.
l[ull p—+o0
ExAMPLE 1.3. If £ = R, the function J(z) = z? is an example
of a (weakly) lower semicontinuous and coercive functional. Another
example is J(u) = ||ul| -

THEOREM 1.4. Let E be a reflexive Banach space, and let J :
E — R be a coercive and weakly lower semicontinuous functional (not
identically equal to +00). Then J has a minimum on E.

Proof. Let

m = inf J(v) < 400,
veEE

and let {v,} in E be a minimizing sequence, i.e., v, is such that

nl_lgl@ J(vy,) = m.

We begin by proving that {v,} is bounded. Indeed, if it were not, there
would be a subsequence {vy, } such that

lim  ||lv,, | = +oo.
k—+o00

Since J is coercive, we will have

m= lim )= lim Jen,) = oo,

5



6 1. EXISTENCE WITH REGULAR DATA IN THE LINEAR CASE

which is false. Therefore, {v,} is bounded in E and so, being E re-
flexive, there exists a subsequence {v,, } and an element v of E such
that v, weakly converges to v as k diverges. Since J is weakly lower
semicontinuous, we have

m < J(v) <liminf J(v,,) = lim J(v,) =m,

k—+o0 n—-4o0o

so that v is a minimum of J. ]

2. Hilbert spaces

2.1. Linear forms and dual space. We recall that a Hilbert space
H is a vector space where a scalar product (-|-) is defined, which is
complete with respect to the distance induced by the scalar product

by the formula
d(z,y) = V(z —ylz —y).

Examples of Hilbert spaces are R (with (z|y) = zy), RY (with the
“standard” scalar product), ¢2, and L*()) with

o) = [ o

THEOREM 1.5 (Riesz). Let H be a separable Hilbert space, and let
T be an element of its dual H', i.e., a linear application T : H — R
such that there exists C' > 0 such that

(1.1) (T, x)| < Cllz||, VzeH.
Then there exists a unique y in H such that
(T,2) = (yla), VoeH,

Proof. Denote by {e;} a complete orthonormal system in H, i.e. a
sequence of vectors of H such that (e|ex) = Opk, and such that, for
every x in H, one has

+o0o
= Z(x]eh)eh.
h=1
It is then well known that there exists a bijective isometry F from H
to (2, defined by F(z) = {(z|es)}. We claim that {(Tep)} belongs to
¢2. Indeed, if
o = Y (T.en)en,

h=1
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we have, by linearity and by (1.1),

> (Tven)* = (Tya) < Cllyull = C (Z(<T, eh>)2) ,

h=1
so that

Z(<T> eh>)2 < 027

h=1
which yields (letting n tend to infinity) that {(T,es))} belongs to (2.
Therefore, one has, again by linearity and by (1.1),

+oo
(T,x) =) (zlen)(T,en), Vo€ H.
h=1
Let now y be the vector of H defined by
+oo
y=> (T,en)en
h=1

Then, since (T, e) = (yl|en), one has
+oo

(T,z) = («len)(ylen), Va € H,

h=1
and the right hand side is nothing but the scalar product in ¢? of F(x)
and F(y). Since F is an isometry, we then have
(T,2) = (ylx), VreH,
as desired. Uniqueness follows from the fact that (y|z) = (z|z) for
every z in H implies y = z (just take x =y — 2). 0

COROLLARY 1.6. The map T + vy is a bijective linear isometry
between H' and H.

Proof. Since (T'+ S,z) = (T, x) + (S, z), and (AT, z) = \N(T, z), it
is clear that the map 7" — y is linear. In order to prove that it is an
isometry, we have

(T, 2)| = [(ylo)] <yl
which implies ||T']] < ||y||. Furthermore

lyll” = (yly) = (T, y) < Ty,

so that ||y|| < ||T'||. The map is clearly injective, and it is surjective
since the application z +— (y|x) is linear and continuous on H (by
Cauchy-Schwartz inequality). 0
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2.2. Bilinear forms. An application a : H x H — R such that
a(Az + py, z) = Aa(z, z) + paly, ),
and
a(z, \x + py) = Aa(z,x) + pa(z, x),

for every x and y in H, and for every A and p in R, is called bilinear
form. A bilinear form is said to be continuous if there exists § > 0
such that

la(z, y)| < Bllellllyll,  Ve,y € H,

and is said to be coercive if there exists a > 0 such that
a(z,r) > a|z||?, Vo€ H.

An example of bilinear form on H is the scalar product, which is both
continuous (with § = 1, thanks to the Cauchy-Schwartz inequality),
and coercive (with a = 1, by definition of the norm in H).

THEOREM 1.7. Let a: H x H — R be a continuous bilinear form.
Then there exists a linear and continuous map A : H — H such that

CL(.%',y) = (A(l‘)’y), Ve,y € H.

Proof. Since a is linear in the second argument and continuous, for
every fixed z in H the map y — a(z,y) is linear and continuous, so
that it belongs to H'. By Riesz theorem, there exists a unique vector
A(z) in H such that

a(z,y) = (A(@)ly), Vz,yeH.

Since a is linear in the first argument, the map = +— A(x) is linear.
Furthermore, by the continuity of a,

IA@)I* = (A(2)|A(z)) = a(z, A(z)) < Bllz[[[| A=)

so that ||A(z)|| < 8]|z||, and the map is continuous. O

2.3. Banach-Caccioppoli and Lax-Milgram theorems.

THEOREM 1.8 (Banach-Caccioppoli). Let (X, d) be a complete me-
tric space, and let S : X — X be a contraction mapping, i.e., a con-
tinuous application such that there exists 6 in [0, 1) such that

d(S(x),S(y)) < 0d(x,y), Vr,ye€X.

Then there exists a unique T in X such that S(T) = Z.
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Proof. Let xy in X be fixed, and define z; = S(xg), 2 = S(z1),
and, in general, x, = S(x,_1). We then have, since S is a contraction

mapping,
d(xpi1, Ty) = d(S(20), S(xn-1)) < Od(zp, Tp_1),
and iterating we obtain
d(xpi1, ) < 0" d(xy, 0).
Therefore, by the triangular inequality,

n—1 n—1
pm — pn
Az, Tm) < d , < 0" d , = .
(T, Tm) < ;; (Thy1, Tn) < ;Z;n (21, 0) 1-0

Since {#"} is a Cauchy sequence in R (being convergent to zero), it then
follows that {z,} is a Cauchy sequence in (X, d), which is complete.
Therefore, there exists T in X such that xz, converges to . Since S
is continuous, on one hand S(z,) converges to S(7), and on the other
hand S(z,) = z,41 converges to T so that T is a fixed point for S. If
there exist T and gy such that S(Z) = T and S(y) = ¥, then, since S is
a contraction mapping,
d(z,y) = d(5(7),S(y)) < 0d(z,7),

which implies (since § < 1) d(Z,y) =0 and so T = 7. O

THEOREM 1.9 (Lax-Milgram). Let a : H x H — R be a continuous

and coercive bilinear form, and let T be an element of H'. Then there
exists a unique T in H such that

(1.2) a(z,z) =(T,z), Vze€ H.
Proof. Using the Riesz theorem and Theorem 1.7, solving the equa-
tion (1.2) is equivalent to find T such that
a(T,z) = (A(@)|2) = (y|2) = (T’ 2), VzeH,

i.e., to solve the equation A(Z) = y. Given A > 0, this equation is
equivalent to T = T — AA(Z) + Ay, which is a fixed point problem for
the function S(z) = x — MA(z) — Ay. Since, being A linear, one has

S(%l) — S(.Z‘Q) =1 — Tog — )\A(l’l) —+ )\A(l’g) =1 — L9 — >\A(I‘1 — 332),

in order to prove that S is a contraction mapping, it is enough to prove
that there exists A > 0 such that

[l = AA(z)]] < 0],
for some 6 < 1 and for every x in H. We have
lz = AA(@)[[* = [|2]]* + N[ A(2)]|* — 2A(A(2) ).
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Recalling Theorem 1.7 and the definition of A, we have
[A@)I1? < B)lzl”,  (Al2)]2) = a(z, ) > allz|?,
so that
[l = AA(2)[|* < (1+ M52 = 2Xa) ||
If0o <\ < %—‘;‘, we have 62 = 1 + \?3%2 — 2)\a < 1, so that S is a
contraction mapping. l

3. Sobolev spaces

The Banach spaces where we will look for solutions are space of
functions in Lebesgue spaces “with derivatives in Lebesgue spaces”
(whatever this means).

3.1. Definition of Sobolev spaces. Let €2 be a bounded, open subset
of RY, N > 1, and let u be a function in L'(). We say that u has a
weak (or distributional) derivative in the direction z; if there exists a
function v in L'(Q) such that

i
= — Vo € CHQ).
Y, /sto, p € Cy(Q)
ou

In this case we define the weak derivative Hao As the function v. If u

has weak derivatives in every direction, we define its (weak, or distri-
butional) gradient as the vector

ou ou
Vu={—,...,— |.
Y (81’17 ’ 813]\/)
If p > 1, we define the Sobolev space W?(Q) as
WhP(Q) = {u e LP(Q) : Vu € (LP(Q)V}.

The Sobolev space W!'P(€) becomes a Banach space under the norm

||u||W1uP(Q) = HuHLP(Q) + HVUH(LP(Q))N )

and W12(Q) is a Hilbert space under the scalar product

(u|v) w2 :/ uv+/ Vu - V.
Q Q

For historical reasons the space W2(02) is usually denoted by H'(Q):
we will use this notation from now on.

Since we will be dealing with elliptic problems with zero boundary
conditions, we need to define functions which somehow are “zero” on
the boundary of €. Since 0f2 has zero Lebesgue measure, and functions
in W1P(Q) are only defined up to almost everywhere equivalence, there
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is no “direct” way of defining the boundary value a function u in some
Sobolev space. We then give the following definition.

DEFINITION 1.10. We define W, ?(Q) as the closure of C}(€) in the
norm of W?(Q). If p = 2, we will denote Wy*(2) by H1(2), which is
a Hilbert space.

From now on we will mainly deal with W, ().

3.2. Properties of Sobolev spaces. Since a function in Wol’p(Q) is
“zero at the boundary” it is possible to control the norm of v in LP(2)
with the norm of its gradient in the same space. This is known as
Poincaré inequality.

THEOREM 1.11 (Poincaré inequality). Let p > 1; then there exists
a constant C', only depending on €2, N and p, such that

(1.3) lull oy < C IVl oy Yu € W™ ().

Proof. We only give an idea of the proof in dimension 1. Let u
belong to C3((0,1)). Then

u(z) = u(0) + /093 u'(t) dt = /OI u'(t)dt, Ve (0,1).

Thus, by Hoélder inequality

T p T 1

| vwa] <ot [wops [ wor

0 0 0

Integrating this inequality yields the result for C3((0,1)) functions. The

result for functions in Wy () then follows by a density argument. [
As a consequence of Poincaré inequality, we can define on VVO1 P(Q)

the equivalent norm built after the norm of Vu in (L7(Q))". From now

on, we will have

Ju(2)|P =

”u||W01’p(Q) = HVUH(LP(Q))N'

Even though functions in W, ”(Q) should only belong to L?(2), the
assumptions made on the gradient allow to improve the summability
of functions belonging to Sobolev spaces. This is what is stated in the
following “embedding” theorem.

THEOREM 1.12. Let 1 < p < N, and let p* = NN—_’; (p* is called

the Sobolev embedding exponent). Then there exists a constant S,
(depending only on N and p) such that

(1.4) lll o 0y < Sp utllypnqy, Y € WoP(Q).
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REMARK 1.13. The fact that p* is the correct exponent can be easily
recovered by a scaling argument. Indeed, if u belongs to VVO1 P(RN),
then u(Az) belongs to the same space. But then

1
)| dx = — 9d
/RN |u< l’)‘ &z AN RN ’u(y)| Y,

and

1
/ IVu(Az)P do = 5= / [Vu(y)|” dy.
RN RN

Therefore, if (1.4) holds for some constant C' (independent on \) and

some exponent ¢, one should have
N N-p

q p
Np _

which implies g = Ny = p*.

Y

By (1.4), the embedding of W,*(Q) in L"(Q) is continuous. To
obtain compactness, we cannot consider exponents up to p*.

THEOREM 1.14. Let 1 < p < N, and let 1 < q < p*. Then the
embedding of Wy (Q) into L4(Q) is compact.

REMARK 1.15. The fact that the embedding of W, () into LP" ()
is not compact is at the basis for several nonexistence results for equa-
tions like —Awu = u? if ¢ is “too large”. But this is another story. ..

An important role will be played by the dual of a Sobolev space.
We have the following representation theorem.

THEOREM 1.16. Let p > 1, and let T be an element of (W, (1)) .
Then there exists F in (L (Q))N such that

(T,u}z/ F-Vu, YueW,"(Q).
0

The dual of Wy*(Q) will be denoted by W~ (), while the dual
of H}(Q) is H1(Q).

REMARK 1.17. The space H}(QQ) is a Hilbert space. Therefore, by
Theorem 1.5, it is isometrically equivalent to its dual H~'(€2). Further-
more, by Poincaré inequality, H} () is embedded into L*(€2), which is
itself a Hilbert space. Since the embedding is continuous and dense,
we also have that the the dual of L?*(2) (which is L*(Q)) is embedded
into H~'(). We therefore have

Hy(Q) € L*(Q) = (L*(Q))' € (Hy(Q)' = H™H(Q).
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If we identify both L?*(Q) and its dual, and H}(Q) and its dual, we
obtain a contradiction (since HJ(2) and L?(2) are different spaces).
Therefore, we have to choose which identification to make: which will
be that L?(f2) is equivalent to its dual.

REMARK 1.18. Since, by Sobolev embedding, W, ?(f) is continu-
ously embedded in L*" (), we have by duality that (L?"(Q))’ is contin-
uously embedded in W= (Q). If we define
*\/ Np
pe=(p") ~ NNy
we then have

LP(Q) € WH(Q).

If p =2, we have 2, = ]\2,—172, and the embedding of L** () into H~ ().

The final result on Sobolev spaces will be about composition with
regular functions.

THEOREM 1.19. Let G : R — R be a lipschitz continuous functions
such that G(0) = 0. If u belongs to Wy?(Q), then G(u) belongs to
Wy (Q) as well, and

(1.5) VG(u) = G'(u) Vu, almost everywhere in €.

REMARK 1.20. Recall that a lipschitz continuous function is only
almost everywhere differentiable, so that the right-hand side of (1.5)
may not be defined. We have however two possible cases: if k is a value
such that G’(k) does not exist, either the set {u = k} has zero measure
(and so, since identity (1.5) only holds almost everywhere, this value
does not give any problems), or the set {u = k} has positive measure.
In this latter case, however, we have both Vu = 0 and VG(u) = 0
almost everywhere, so that (1.5) still holds.

Let £ > 0; in what follows, we will often use composition of func-
tions in Sobolev spaces with

(1.6) Ty (s) = max(—Fk, min(s, k)),

and
(1.7) Gi(s) = 5 — Tk(s) = (|s] — k). sgn(s).
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k
By Theorem 1.19, we have

VTi(u) = VuX(u<ry, VGe(u) = VUX{juzk},

almost everywhere in 2.

4. Weak solutions for elliptic equations
We have now all the tools needed to deal with elliptic equations.

4.1. Definition of weak solutions. Let A : Q@ — RN be a matrix-
valued measurable function such that there exist 0 < o < 3 such that
(1.8) A(x)€- € > alg, |A(r)] <,
for almost every x in €2, and for every ¢ in RY. We will consider the fol-
lowing uniformly elliptic equation with Dirichlet boundary conditions

{—div(A(:z:) Vu)=f inQ,

1.
(1.9) u=>0 on 0f,

where f is a function defined on €2 which satisfies suitable assumptions.
If the matrix A is the identity matrix, problem (1.9) becomes

—Au=f in{,
u=>0 on 0,
i.e., the Dirichlet problem for the laplacian operator.

4.2. Classical solutions and weak solutions. Suppose that the ma-
trix A and the functions u and f are sufficiently smooth so that one
can “classically” compute —div(A(z)Vu). If ¢ is a function in C}(£2),
we can then multiply the equation in (1.9) by ¢ and integrate on €.
Since

—div(A(z)Vu) p = —=div(A(z)Vu ) + A(z)Vu - Ve,
we get

/QA(x)Vu-Vgp—/Qdiv(A(x)Vugo):/ﬂf(p.

By Gauss-Green formula, we have (if v is the exterior normal to 2)

/Q div(A(x)Vup) = o, A(x)Vu-vep =0,
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since ¢ has compact support in 2. Therefore, if u is a classical solution
of (1.9), we have

/A(x)Vu-VU:/fv, Vv € CL(9).
0 0

We now remark that there is no need for A, u, ¢ and f to be smooth
in order for the above identity to be well defined. It is indeed enough
that A is a bounded matrix, that u and ¢ belong to HJ(€2), and that
fisin L*(Q) (or in L?*(9), thanks to Sobolev embedding, see Remark
1.18).

We therefore give the following definition.

DEFINITION 1.21. Let f be a function in L?*(2). A function u in
H}(Q) is a weak solution of (1.9) if

(1.10) /QA(x)Vu-Vv:/va, Vv € Hy(9).

If u is a weak solution of (1.9), and w is sufficiently smooth in order
to perform the same calculations as above “going backwards”, then
it can be proved that u is a “classical” solution of (1.9). The study
of the assumptions on f and A such that a weak solution is also a
classical solution goes beyond the purpose of this text (also because we
are interested in “bad” datal).

4.3. Existence of solutions (using Lax-Milgram).

THEOREM 1.22. Let f be a function in L*(Q)). Then there exists
a unique solution u of (1.9) in the sense of (1.10).

Proof. We will use Lax-Milgram theorem. Indeed, if we define the
bilinear form a : Hy(Q) x Hg(2) — R by

o, v) = /Q A(2)Vu - Vo,

and the linear and continuos (thanks to Sobolev embedding) functional

T:H}(Q) — R by
(T, v) /fv

solving problem (1.9) in the sense of (1.10) amounts to finding u in
H;(2) such that

a(u,v) = (T,v), Yv & Hy(Q),

which is exactly the result given by Lax-Milgram theorem. In order to
apply the theorem, we have to check that a is continuous and coercive
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(the fact that it is bilinear being evident). We have, by (1.8), and by
Holder inequality,

la(u,v)| < / A@) IVl [90] < B ull 10y 1ol s o
Q

so that a is continuous. Furthermore, again by (1.8), we have

ofun) = [ A@Vu-Vaza [ [V =l
Q Q
so that a is also coercive. O

4.4. Existence of solutions (using minimization). If the matrix A
satisfies (1.8) and is symmetrical, existence and uniqueness of solutions
for (1.9) can be proved using minimization of a suitable functional.

THEOREM 1.23. Let f be a function in L** (), and let J : Hj(Q2) —
R be defined by

1

J(v)zi/QA(x)VwVv—/va, Vo € HL(Q).

Then J has a unique minimum v in H} (), which is the solution of
(1.9) in the sense of (1.10).

Proof. We begin by proving that J is coercive and weakly lower
semicontinuous on H} (), so that a minimum will exist by Theorem
1.4. Recalling (1.8) and using Holder and Sobolev inequalities, we have

«
5025 [ 190 = £l Nl

«@ 2

and the right hand side diverges as the norm of u in H}(Q) diverges,
so that J is coercive. Let now {v,} be a sequence of functions which
is weakly convergent to some v in H}(f2). Since f belongs to L*(f),
and v, converges weakly to v in L* (£2), we have

lim /fvn:/fv,
n—-—+00 Q Q

so that the weak lower semicontinuity of J is equivalent to the weak
lower semicontinuity of

Kv) = /Q A(x)Vuv - V.
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By (1.8) we have

/Q A(@) V(v = v,) - V(v — 1) > 0,

which, together with the symmetry of A, implies

(1.11) 2/ A(x)Vuv - Vu, — / A(xz)Vv - Vo < / A(x)Vuy, - Vo,.

0 Q Q
Since Vv, converges weakly to Vo in (L?(Q2))V, and since A(x)Vv is
fixed in the same space, we have

lim A(x)Vv - Vu, = / A(x)Vuv - Vo,
0

n—-4o00 Q

so that taking the inferior limit in both sides of (1.11) implies

/ A(z)Vv - Vo < liminf / A(z)Voy, - Vo,
Q n—too Jo
which means that K is weakly lower semicontinuous on Hj(f2), as
desired.

Let now u be a minimum of J on HJ(€2). We are going to prove
that it is unique. Indeed, if v and v are both minima of J, one has

>7 J(U)SJ<U+U>,

U+ v

J(u) < J(

that is,

J(u) +7(0) < 27 (* * %),

which becomes (after cancelling equal terms and multiplying by 4)

Z/QA(QJ)VU-VquZ/QA(x)Vu-Vu:/A(x)V(u—H))~V(u+v).

Q

Using the fact that A is symmetric, expanding the right hand side, and
cancelling equal terms, we arrive at

/QA(x)Vu-Vu—Z/QA(x)Vu-Vv—F/QA(x)Vv-Vvg0,

which can be rewritten as
/Q A(x)V(u —v) - V(u—wv) <0.
Using (1.8) we therefore have
o flu = vl ) <0,

which implies u = v, as desired.
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We are now going to prove that the minimum w is a solution of
(1.9) in the sense of (1.10). Given v in H}(2) and ¢ in R, we have
J(u) < J(u+ tv), that is

3 [ A@veve- [ o< [ a@rn) V- [ )

Expanding the right hand side, cancelling equal terms, and using the
fact that A is symmetric, we obtain

2
t/A(x)Vu-Vv—l—t—/A(x)V%Vv—t/vaO.
Q 2 Jo Q

If t > 0, dividing by ¢ and then letting ¢ tend to zero implies

/QA(x)Vu-VU—/QfUZO,

while if ¢ < 0, dividing by ¢ and then letting ¢ tend to zero implies the
reverse inequality. It then follows that

/A(x)Vu-VU:/fv, Vv € H (),
Q Q

and so u solves (1.9) (in the sense of (1.10)). In order to prove that
such a solution is unique, we are going to prove that if u solves (1.9),
then v is a minimum of J. Indeed, choosing u — v as test function in
(1.10), we have

/QA(x)Vu-Vu—/QA(x)VU-Vv:/Qf(u—v).

This implies

J(u)—k%/QA(x)Vu-Vu—/QA(x)Vu-VU:J(v)—%/ﬂA(x)Vv-Vv,

which implies J(u) < J(v) since

%/QA(x)Vu-Vu—/QA(x)Vu~VU+%/A(a:)Vv-Vv

Q

is nonnegative being equal to
1

3 /QA(x)V(u —v)-V(u—v),

which is nonnegative by (1.8). O



CHAPTER 2

Regularity results

Thanks to the results of the previous section, we have existence
of solutions for data f in L?:(€). The solution u then belongs to
H(€Q) and (thanks to Sobolev embedding) to L? (). One then won-
ders whether an increase on the regularity of f will yield more regular
solutions.

1. Examples

We are going to study a model case, in which the solution of (1.9)
can be explictly calculated. This example will give us a hint on what
happens in the general case.

EXAMPLE 2.1. Let Q) = B%(O), let N > 3, let & < N and define
1
f(z) = :
2| (—log(|z[))

It is well known that f belongs to LF(€2), with p = &. We are going to
study the regularity of the solution u of

—Au=f in{,
u=>0 on 0f),
taking advantage of the fact that the solution will be radially symmet-

ric. Recalling the formula for the laplacian in radial coordinates, we
have

1 N—1_7/ I 1
vt ) = Ty

and integrating between 0 and p, we obtain
N1 P tN—l—Ot
—1
pr T u(p) = / dt
o log(t)
Dividing by p"~! and integrating between 3 and p we then get (recall-
ing that u(1) = 0)

= [ o ([ ) as

19

p
-1

Multiplying by p™
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We are integrating on the set £ = {(s,t) e R? : p < s <
t

1/

1,0<t<s},

P Ly $

which, after exchanging ¢ with s, becomes £ = {(t,s) e R? : 0 <t <

L max(p,t) < s < 1},

S

1/2 ‘
E; |
p :

P 1/2 t

Exchanging the integration order, we then have

)

ds

o= [ ([ "
U — P -
P 0 log(t) max(p,t) sN=1

1

w2 e (3) o]

_oN-2 /% tN?liadt 1 /é N1 (max(p, t))* N
TN-2), log(t) N=2Jo log(®)

Since a < N, the first integral is bounded, so that it is enough to study
the behaviour near zero of the function

B 2 tN=1=2(max(p, t))> N
we)= /0 log(t) “

o N /p tN—l—oc dt /’é tl—oc dt
=p*” + [
P )y Tlog(®)  log(t)

=p* N w(p) + 2(p).

dt.

It is easy to see (using the de I'Hopital rule), that if o # 2

N—a 2—a

p
and z(p) = og(o)’

p
log(p)’

w(p) ~
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as p tends to zero, so that, if o # 2,

2—a

p
log(p)’

as p tends to zero. This implies that u belongs to L*(Q) if a < 2,
while it is in L™(Q), with m = 25 if 2 < a < N. Recalling that

a—2"
f belongs to LP(£2) with p = %, we therefore have that u belongs to
L>=(Q) if f belongs to LP(Q), and p > &, while it is in L™(12), with

m = N]i’;p, if f belongs to LP(Q), with 1 < p < %

If a = 2, then

u(p) =

pra

log(p

so that w is in every L™(2), but not in L>(Q), if f belongs to L*(Q2)
with p = % In this case (which we will not study in the following), it
can be proved that el*l belongs to L!().

Observe that if o = %, so that f belongs to L*(Q), we get
that u belongs to L? (Q), which is exactly the results we already knew
by Sobolev embedding. Also remark that the above example gives
informations also if f does not belong to L?*(f2) (i.e., if % < a < N),
an assumption under which we do not have any existence results (yet!).

If we want to take @ = N, we need to change the definition of f.
We fix § > 1 and define

w(p) ~ , and  z(p) = log(—log(p)),

~—

1
(—log(|]))?"

which is a function belonging to L!(€2). Performing the same calcula-
tions as above, we obtain

1 2 dt
"0 =55 | e

so that
1

ulp) ~ pN=2 (=log(p))P~t’

as p tends to zero. Observe that in this case f belongs to L'(Q) for

every 3 > 1, but u belongs to L™(2), with m = N]Xél.l = % if and

only if g > 2 — % fl<p<2-— %, the solution u belongs “only” to

L™(Q), for every m < .

We leave to the interested reader the study of the case N = 2.
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2. Stampacchia’s theorems

The regularity results we are going to prove now show that the
previous example is not just an example. We begin with a real analysis
lemma.

LEMMA 2.2 (Stampacchia). Let ¢ : Rt — R be a nonincreasing
function such that

M p(k)°
(h— k)’

where M > 0, 0 > 1 and v > 0. Then 1(d) = 0, where

(2.12) W(h) < Vh >k >0,

47 = M p(0)°~1 251,
Proof. Let n in N and define d,, = d(1 —27"). We claim that
(213) (dn) < (0) 277

Indeed, (2.13) is clearly true if n = 0; if we suppose that it is true for
some n, then, by (2.12),
s _(nt+y

5
(de(de) 7 < M0 27 20T = ()27
n+1 — Wn

which is (2.13) written for n + 1. Since (2.13) holds for every n, and
since 1 is non increasing, we have

P(dnt1) <

0< () <liminf (d,) < Tim_(0) ' 271 =0,
as desired. 0
The first result (due to Guido Stampacchia, see [8]), deals with
bounded solutions for (1.9).

THEOREM 2.3 (Stampacchia). Let f belong to LP(2), with p > %
Then the solution u of (1.9) belongs to L>(2), and there exists a
constant C', only depending on N, ), p and «, such that

(2.14) HUHLOO(Q) <C Hf”LP(Q)'

Proof. Let k > 0 and choose v = Gj(u) as test function in (1.9)
(Gi(s) has been defined in (1.7)). Defining Ay = {z € Q : |u(z)| > k}
one then has, since Vo = Vu x4, , and using (1.8)

o/ VG < | a@vu- Vs, = [ 160 = [ 160

A
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Using Sobolev inequality (in the left hand side), and Hélder inequality
(in the right hand side), one has

2
*

s Ak|Gk<u>|2*)2 < (/ i/

2 % 2+ \ 2
([ tewwr)”
A
Simplifying equal terms, we thus have

2\ 2 pa
[ G < (%) ( / o ) .

Recalling that f belongs to LP(2), and that p > 2, since p > %, we
have (again by Hoélder inequality)

« 82 P - 2% o*
/ G| < ( > LIl (Q)) m(Ag)5 %
Apg

a
We now take h > k, so that A, C Ay, and Gg(u) > h—k on A,. Thus,

« 82 p > 2% 9%
m—m%mmg<iﬁﬁﬁg m(Ay) "7,

(%

1
=

which implies

% *

2% 2
522HfHLp(Q)> m(Ag)2" 7

(h— k)

(%

We define now ¢ (k) = m(Ay), so that

M (k)°
h) < —F—~2L
where
S3 HfHLP(Q) g 2r 2
(\/i: _— > 6:———’ ’}/:2*
(0% 2* p

The assumption p > % implies 0 > 1, so that applying Lemma 2.2, we
have that ¢ (d) = 0, where

d* = C(Q,N,p) M
Since m(Ay) = 0, we have |u| < d almost everywhere, which implies
||u||L°°(Q) <d=C(N,Q,p,a) ||f||Lp(Q) 5
as desired. U
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REMARK 2.4. Observe that, in order to prove the previous theorem,
we did not use two of the properties of the equation: that the matrix
A is bounded from above (we only used its ellipticity) and, above all,
the fact that the equation was linear: in other words, the proof above
also holds for every uniformly elliptic operator.

The second results deals with the case of unbounded solutions.

THEOREM 2.5 (Stampacchia). Let f belong to LP(Q2), with 2, <
p < % Then the solution u of (1.9) belongs to L™(2), with m = p** =
N]X ’;p, and there exists a constant C', only depending on N, ), p and

«, such that
(2.15) [ull e ) < C [ fll ooy

Proof. We begin by observing that if p = 2,, then p™ = 2% so
that the result is true in this limit case by the Sobolev embedding.
Therefore, we only have to deal with the case p > 2,.

The original proof of Stampacchia used a linear interpolation the-
orem; i.e., it is typical of a linear framework. We are going to give
another proof, following [3], which makes use of a technique that can
be applied also in a nonlinear context.

Let k£ > 0 be fixed, let v > 1 and choose v = |T},(u)|[* 72 T).(u) as
test function in (1.9) (Tk(s) has been defined in (1.6)). We obtain

(27— 1>/Q A(@)Vu - VTi(u) [ Ti(w) 72 = /Q FITe(w) 772 Ti(w).

Using (1.8), and observing that Vu = VT, (u) where VTy(u) # 0, we
then have

a(2y—1) \VTk(U)I2|Tk(U)|2”‘QS/ [T ()7
Q Q

Since |V, (u)|? | Ti(u)[ 72 = & |V|Ti(w)"|?, we have
2
2B [ e < [ 1 mwe,

Using Sobolev inequality (in the left hand side), and Holder inequality
(in the right one), we obtain

(6% A\ 2 1\ ;1/
D ([ inr™ ) < e ([ 1)
Q

We now choose v so that v2* = (2y — 1)p/, that is v = p2 (as it is

easily seen). With this choice, v > 1 if and only if p > 2, (which is
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true). Since p < Y we also have 2 > L and so
27 2 2

([ mw

Observing that 21 — z% = oo, We have therefore proved that

1T ()l o () < C(N,Q,p, @) [[fll oy ¥E > 0.

Letting k tend to infinity, and using Fatou lemma (or the monotone
convergence theorem), we obtain the result. U

2 _ L
*

2 _p/
» ) < C(N,Q,p,0) [l oy

REMARK 2.6. The results of theorems 2.3 and 2.5 are somehow
“natural” if we make a mistake... Indeed, let u be the solution of
—Au = f, with f in LP(Q). Then, if we read the equation, we have
that u has two derivatives in L?(Q), so that it belongs to W;”(Q). By
Sobolev embedding, u then belongs to VVO1 P (Q) and, again by Sobolev
embedding, to LF” () (or to L=(Q) if p > &). The “mistake” here
is to deduce from the fact that the sum of (some) derivatives of u
belongs to LP(S2), the fact that all derivatives are in the same space.
Surprisingly, it turns out that, in the case of the laplacian, the fact
that —Au belongs to LP(Q) actually implies that u is in Wz*(Q) (this
is the so-called Calderun-Zygmund theory), so that the “mistake” is
not an actual one. ..

Summarizing the results of this chapter, we have the following pic-
ture.

> Hy(Q) Hy(Q)
' L (Q) L>(Q)
Theorem 2.5 Theorem 2.3
1 2= X p

We will deal with the “?” part in the forthcoming chapter (actually,
in all the forthcoming chapters).






CHAPTER 3

Existence via duality for measure data

We are now going to deal with existence results for data which do
not belong to L*(Q) (i.e., they are not in H~*(£2)), so that neither Lax-
Milgram theorem nor minimization techniques can be applied. Before
going on, we need some definitions.

1. Measures

We recall that a nonnegative measure on () is a set function p :
B(2) — [0, +oc] defined on the o-algebra B(2) of Borel sets of Q (i.e.,
the smallest o-algebra containing the open sets) such that u(0) = 0

and such that
“+o00

N(U En) = Z N(En)a

n=1
for every sequence {FE,} of disjoint sets in B(£2). A measure y is said
to be regular if for every F in B(2) and for every ¢ > 0 there exist an
open set A., and a closed set C., such that

C.CECA, uAN\C) <e.

A measure p is said to be bounded if 1(€2) < 4+00. The set of nonneg-
ative, regular, bounded measures on  will be denoted by M™(Q). We
define the set of bounded Radon measures on €1 as

M(Q) = {1 — pa, pi € MF(Q)}.
Given a measure g in M(Q), there exists a unique pair (u*, ) in
MF(Q) x MT(Q) such that
po=pt =y,
and such there exist E* and E~ in B(f), disjoint sets, such that
p=(E) = n(ENE*), VE e B(Q).
The measures u™ and p~ are the positive and negative parts of the

measure p. Given a measure p in M(), the measure || = p™ + p~
is said to be the total variation of the measure pu. If we define

||M||M(Q) = [ul(%2),
27
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the vector space M(£)) becomes a Banach space, which turns out to
be the dual of CJ(€2).

A bounded Radon measure p is said to be concentrated on a Borel
set £ if u(B) = p(B N E) for every Borel set B. In this case, we will
write ul_ E. For example, we have u* = ul_ E*, with E* as above.

Given two Radon measures p and v, we say that p is absolutely
continuous with respect to v if v(E) = 0 implies u(E) = 0. In this case
we will write 4 << v. Two Radon measures p and v are said to be
orthogonal if there exists a set E such that pu(F) =0, and v =v|_E.
In this case, we will write 4 L v. For example, given a Radon measure
i, we have pt L .

THEOREM 3.1. Let v be a nonnegative Radon measure. Given a
Radon measure i, there exists a unique pair (jo, p1) of Radon measures
such that

o= fo+ p1,  pro <<wv, gL
Proof. Suppose that p is nonnegative, and define
A={nFE): EeB(Q), v(F)=0}.
Let a = sup A, and let E,, be a maximizing sequence, i.e., a sequence
of Borel sets such that
lim w(E,) =« v(E, =0.

n—-+00
If we define E as the union of the E,, clearly v(F) = 0 (since v is o-
subadditive), and u(E) = « (since u(E) > pu(E,) for every n). Define
now
pmo=pl B opy=p— .

Clearly, u1 L v (since v(E) = 0, and since p; is concentrated on E
by definition). On the other hand, if v(B) = 0, then py(B) = 0; and
indeed, if it were uo(B) > 0, then

0 < po(B) =pu(B) —u(BNE) = u(B\ E),
so that BU E is such that v(BU E) = 0, and
p(BUE) = pE) +u(B\ E)=a+u(B\E)>a

thus contradicting the definition of «.

As for uniqueness, if p = po+ 1 = pgy + @y, then po — g = py — .
If v(B) = 0, we will have (u; — py)(B) = 0. Since pq — g} is orthogonal
with respect to v, this implies that (u; — p})(E) = 0 for every Borel
set F, so that puy = pf, hence pp = pug.

If the measure p has a sign, it is enough to apply the result to p™
and p~. U
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Examples of bounded Radon measures are the Lebesgue measure
LY concentrated on a bounded set of RY, or the measure defined by

5, (F) — 1 ifxy € E,
0 ifag € E,

which is called the Dirac’s delta concentrated at zy,. We clearly have
0z L LY. Another example of Radon measure is the measure defined

by
_ / f(x) do

with f a function in L'(2). In this case p << LV, and

B = [ Fwan e = [ 1w

For sequences of measures, we have two notions of convergence: the
weak*:

/de/ﬁn_)/@d/% Vi € Cp (),
Q Q

and the narrow convergence:

/Qcpdunﬁ/ﬂwdu, Vi € Gy().

For positive measures, narrow convergence is equivalent to weak™ con-
vergence and convergence of the “masses” (i.e., u,(€) converges to
w(§2). If z, is a sequence in Q which converges to a point z; on
02, then 4, converges to zero for the weak* convergence (since the
measure d,, is indeed the zero measure in ), but not for the narrow
convergence.

Before dealing with existence results for elliptic equations with mea-
sure data, we will begin with a particular case.

2. Duality solutions for L' data

Let f and g be two functions in L*(£2), and let u and v be the
solutions of

—div(A(z) Vu) = f in Q, —div(A*(z) Vv) =g in Q,
u=>0 on 02, v=20 on 0f).

where A* is the transposed matrix of A (note that A* satisfies (1.8
with the same constants as A). Since both u and v belong to H}(Q), u
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can be chosen as test function in the formulation of weak solution for
v, and vice versa. One obtains

/ng:/QA*(x)VU~Vu:/QA(x)Vu-Vv:/Qfv.

In other words, one has
o[

for every f and g in L*°(f)), where u and v solve the corresponding
problems with data f and g respectively. Clearly, both u and v belong
to L>°(€2) by Theorem 2.3, but we remark that the two integrals are
well-defined also if f only belongs to L'(€2), and u only belongs to
L*(Q) (always maintaining the assumption that ¢ — and so v — is
a bounded function). This fact inspired to Guido Stampacchia the
following definition of solution for (1.9) if the datum is in L'((2).

DEFINITION 3.2. Let f belong to L'(2). A function w in L*(Q) is
a duality solution of (1.8) with datum f if one has

[us=[ 1o

for every g in L*°(£2), where v is the solution of

—div(A*(x) Vo) = ¢ in (,
v=20 on Of).

THEOREM 3.3 (Stampacchia). Let f belong to L*(2). Then there
exists a unique duality solution of (1.8) with datum f. Furthermore, u

belongs to L(Q), for every q < 2.

Proof. Let p > % and define the linear functional 7' : LP(Q) — R

by
(T,9) Z/va-

By Theorem 2.3, the functional is well-defined; furthermore, since
(2.14) holds, there exists C' > 0 such that

(T, g)| < /Q [fl o] < HfHLl(Q) HUHLOO(Q) <C Hf”Ll(Q) HgHLP(Q)7

so that T" is continuous on LP(€2). By Riesz representation Theorem
for LP spaces, there exists a unique function u, in Lp'(Q) such that

(T,g) = / wpg, Vge LP(Q).
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Since L*(2) C LP(Q2), we have

[ wa=it9)= [ 7o vger=@,

so that u, is a duality solution of (1.9), as desired. We claim that w,
does not depend on p; indeed, if for example p > ¢ > %, we have

/upgz/fvz/qu, Vg € L™(Q),
Q Q Q

so that u, = u, in L'(2) (and so they are almost everywhere the
same function). Therefore, there exists a unique function v which is a
duality solution of (1.9), and it belongs to L” (12) for every p > &'; i.e.,

u belongs to L1(Q2) for every g < 25, as desired. O
Remark that the fact that u belongs to L(€2) for every ¢ < <2

is consistent with the results of the last part of Example 2.1 (the case
a=N).

3. Duality solutions for measure data

The case of L'(Q) data is only a particular one, since L'(Q) is a
subset of M(Q). However, recalling that M(Q) is the dual of C°(Q),
the proof of Theorem 3.3 could be performed in exactly the same way
if one knew that the solution of (1.9) were not only bounded, but also
continuous on  if the datum is in LP(Q) with p > . This is exactly
the case if the boundary of €2 is sufficiently regular.

THEOREM 3.4 (De Giorgi). Let Q be of class C', and let f be in
LP(Q), with p > 5. Then the solution u of (1.9) with datum f belongs

to C°(Q), and there exists a constant C,, such that
||UHCO(§) <G ||fHLP(Q)‘

Thanks to the previous result, we thus have the following existence
result.

THEOREM 3.5. Let p be a measure in M(Q). Then there exists
a unique duality solution of (1.8) with datum p, i.e., a function u in

L'(Q) such that
/ ug =/ vdp, Vg€ L*(Q),
Q Q

where v is the solution of (1.9) with datum g and matrix A*. Further-
more, u belongs to L4(Y), for every q < %
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4. Regularity of duality solutions

If the datum f belongs to LP(2), with 1 < p < 2,, then the duality
solution of (1.9) is more regular.

THEOREM 3.6. Let f belong to LP(Q2), 1 < p < 2,. Then the

duality solution u of (1.8) belongs to LP™ (Q), p** = N]gp.

Proof. Let q = %, and define 7" : L9(Q2) — R as in the proof

of Theorem 3.3. We then have
(T, g)] < / 1100 < 1 w19l -

By Theorem 2.5, the norm of v in L"(f2) is controlled by a constant
times the norm of ¢g in L%(Q), with r = s**. Taking r = p/, this gives
s = ¢; hence,

(T < C Nl 191l Ly »

so that the function u which represents T belongs to L9 (Q); since we

have ¢’ = N]\i’;p, the result is proved. O

Once again, the fact that u belongs to LP" () is consistent with

the results of Example 2.1 (the case &2 < a < N).
The picture at the end of Chapter 2 can now be improved as follows.

? ? H(2) H(S2)
L%_E(Q) ~ Lp** (Q) Lp** (Q) LOO(Q)
Theorem 3.3 Theorem 3.6 Theorem 2.5 Theorem 2.3

1 2 x p



CHAPTER 4

Existence via approximation for measure data

The result of Theorem 3.5 is somewhat unsatisfactory: even though
it proves that there exists a unique solution by duality of (1.9) if the
datum belongs to M(€), it only states that the solution belongs to
some Lebesgue space, and does not say anything about the gradient
of such a solution. In order to prove gradient estimates on the duality
solution we have to proceed in a different way.

THEOREM 4.1. Let p belong to M(Q2). Then the unique duality
solution of (1.8) with datum f belongs to Wy*(R), for every ¢ < .

Proof. Let f,, be a sequence of L>°(£2) functions which converges to
pin M(§2), with the property that || f, ]l 11 q) < |14l py(q). and let u, be
the unique solution in H} () of

—div(A(x) Vu,) = f, in Q,
Uy, =0 on 0f).

Let & > 0 and choose v = Tj(u,) as test function of the weak for-
mulation for u,. We obtain, recalling that Vu, = VTj(u,) where
VT (u,) # 0, and using (1.8),

/ V() < / A(2) V- VT (un) = / FuTi(n) < K tlancey

where in the last passage we have used that |Tj(u,,)| < k. Using Sobolev
embedding in the left hand side, we have

2
Q «\ 2
& ([ mw )" <k lullue,

Observing that |Tj(u,)| = k on the set A, = {x € Q: |u,(z)| > k},
we have

@ K (m m(A, ) <k ||M||M(Q)a

which implies
Irgipvres >NN

m(An ) < o( -

33
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with C' depending only on N and «. Now we fix A > 0, and we have
{IVun| 2 A} = {[Vun| 2 X, [un| <k} U{|[Vun| 2 A, |un| = K},

so that
{IVu,| > A} C{|Vun| > A, |un| < k} U Apg.

Since
)P < ||M||M
m{Viml 2 A Junl <k} < 55 | V()" < :
we have
k 2

(el < ||uA||2M<m » <Hu||;:(m> =
for every k > 0. If we choose k = AN [l Ve the above inequality
becomes

”MHM(Q))NN_l

m({|Vua] > N}) < C(7=

Let ¢ < % be fixed, and let t > 0. Then

/ |Vun|q:/ |Vun|q+/ Vi,
0 (I Vunl<t} (19120

<19m(Q) + (g — 1)/ N (| V| > A}) d

t

400 N
<t m(Q) + Cg — )||f||L1(Q)/ U,
t
N

Clg —1) Il Ve
=t1m(Q) + ](Vq ) A
N-1 4 v

Choosing ¢ = [[pt[| v, we obtain

(4.16) 19007 < €, e
so that u, is bounded in W, 9(Q), with ¢ < 2. Note that C, diverges
as ¢ tends to 5. Therefore, up to subsequences U, converges to some

function u, Weakly in W,%(Q) and strongly in L(Q). Since u,, being
a weak solution, is such that

/ung:/fnv, Vg € L=(Q), Vn € N,
Q Q

we can pass to the limit as n tends to infinity to have

/qu:/ Ud/L, VQELOO<Q)7
Q Q
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so that u, (which belongs to Wy (Q) for some g < ) is the duality
solution of (1.9) with datum g. This fact is true for every ¢ < 2=, so
that u, does not depend on ¢. It then follows that the duality solution

u of (1.9) belongs to Wy?(Q2) for every ¢ < 2. O

REMARK 4.2. If = f is a function in L'(€), and f, converges to
f strongly in L'(Q), we have that f, is a Cauchy sequence in L().
Thus, if we repeat the proof of the previous theorem working with

Up — U, using the linearity of the operator, and “keeping track” of
fu — fm, we find that (4.16) becomes

Vit = tnl? < Cy 1 = Finlltscy
Q

for every q < % Since {f,} is a Cauchy sequence in L'(Q), it then
follows that u,, is a Cauchy sequence in VVO1 9(Q), for every q < %
This implies that u,, strongly converges to the solution u in VVO1 9(Q),
for every ¢ < %, so that (up to subsequences) Vu, converges to Vu
almost everywhere in 2.

REMARK 4.3. If 4 = f is a function in L'(Q2), and we repeat the
proof of the previous theorem working with u, — v,, where v,, is the
solution of (1.9) with a datum g, which converges to f in L'(Q), we

find as before that
(4.17) /Q V(= v)|* < C | fo = gnll71(q)

for every ¢ < Since {f, — gn} tends to zero in L'(Q), it then

N
N-1

follows that wu, — v, tends to zero in W, (), for every ¢ < 2. In
other words, the solution u found by approximation does not depend
on the sequence we choose to approximate the datum f. We already
knew this fact (since every approximating sequence converges to the
duality solution which is unique), but this different proof may be useful
if, for example, the differential operator is not linear, but allows to
prove (4.17) in some way, so that the concept of duality solution is not
available.

If the datum f is “more regular”, one expects solutions with an
increased regularity. We already know, from Theorem 3.6, that the
summability of u increases with the summability of f, but what hap-
pens to the gradient? Recall that if the datum f is “regular” (i.e., if it
belongs to L?+(2)), the summability of « increases with that of f, but
the gradient of u always belongs to (L?(€))"™. Surprisingly, this is not
the case for “bad” solutions, as the following theorem shows.
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THEOREM 4.4. Let f be a function in L™(2), 1 < m < 2,. Then
the duality solution of (1.9) belongs to Wy'™ (), m* = .

Proof. Let f, = T,(f), and let u,, be the unique solution of

—div(A(x) Vu,) = f, in Q,
U, =0 on Of).

Since we already know that u,, will converge to the duality solution of
(1.9), it is clear that in order to prove the result it will be enough to
prove an a priori estimate on w,, in I/VO1 m(Q) In order to do that, we
fix h > 0 and choose ¢y (u,) = T1(Gr(uy,)) as test function in the weak
formulation for w,. If we define B, = {x € Q : h < |u,| < h+ 1},
and Ay, = {x € Q : |u,| > h} (for the sake of simplicity, we omit the
dependence on n on the sets), we obtain, recalling (1.8),

of L | AV, Venw) = [ oot < | i

Let now 0 < A < 1; we can then write
“+o00

Vu,? <% IV, |2
Ly Z/ T e = 2 T i /‘V“"'2
+oo
Z h)A/ 7] = ,;%—(Hw,; N
k
_Z/B |Za1+h

=0

C kl—)\ O " 1—X
< Z MR /Qlfl(1+|u )

<O fllme ( [a+ runw“-”m’) .

Let now ¢ > 1 be fixed. Then, by Sobolev and Holder inequality,

s/

q

T |Vun|q A
q S Vunq:/—q 1_|_ Up, 2
)< [1vul g (1
Tl ) (Lo )

<( [ el 1 4 Jun|) 25
(L) (formD ')

<O fllmo ( Ja~ run|><1—”m’)
1—
x</u+hwy%> .

Q

(SIS

N
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We now choose A and ¢ in such a way that

Ag
-\ = ¢ = 2L
(I=Mm' =g¢ 54
This implies
N(2—q) Nm
)\: = *:—_
N—q’ ™= N_m

It is easy to see that 1 < m < 2, implies 0 < A < 1, as desired. We

thus have
9

E3 17ﬁ
( / |un|q*) <C [ 190l < C ( / <1+|un|>q) .
Q Q Q

Since £ > 1 — 5L is true (being equivalent to m < ), we obtain
q m

from the first and third term that wu, is bounded in L7 () (which

is again L™ (€2), see Theorem 2.5) by a constant depending (among

other quantities) on the norm of f in L™(2). Once u, is bounded, the

boundedness of |Vu,| in L($2) (with ¢ = m*) then follows comparing

the second and the third term. O
We can now draw the complete picture.

N, .

Wy ) (Wt ()| H(Q) Hg ()
L¥275(Q) —| L7 (Q) L (Q) L>(Q)
Theorem 4.1 Theorem 4.4 Theorem 2.5 Theorem 2.3

1 2N
N+2

N
i






CHAPTER 5

Nonuniqueness for distributional solutions

If the datum p is a measure, we have proved in Theorem 4.1 that
the sequence u, of approximating solutions is bounded in VVO1 (),

N

for every ¢ < 575. Therefore, and up to subsequences, u, weakly

converges to the solution u in Wol’q(Q), for every q < % Choosing a
C} () test function ¢ in the formulation (1.10) for u,,, we obtain

| A@vu, Vo= [ e

which, passing to the limit, yields

/A(a:)Vu-V@:/ wdu Yo € Cy(9Q),
0 0

so that w is a solution in the sense of distributions of (1.9). Since
the definition of solution in the sense of distributions can always be
given (even when the notion of duality solution is unavailable due for
example to the operator being nonlinear), one may wonder whether
there is a way of proving uniqueness of distributional solutions (not
passing through duality solutions).

The following example is due to J. Serrin (see [7]). Let € > 0 and
Af(x) be the symmetric matrix defined by
ag;(x) = 0y + (ac — 1)

ij

T Xj
]

If a, = e N-1

N-219) then the function

wa(x) =1 |:13|1_N_€
is a solution in the sense of distributions of
(5.18) —div(A%(z) Vw®) =0, in RV \ {0}.

Indeed, if we rewrite w(x) = x1|z|* and
T; T
aij(r) = 6 + 5|$—|2]7
simple (but tedious) calculations imply

we, () = |2[* + axf|z]*7%, we,(2) = amyai]z|* 7,

39
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so that

N
Z aij(2) W, () = 61j]7|* + (@B + a + B)xyz;|z|* 2.

i=1

Therefore,
(A(2) Vw),, = ax|z|* 2 + (af + a + B)[221|2]* 2 + (a — 2)z}|z]|**,
and

(A(z) Vw)z, = (@B + a + B)|a|2]*72 + (a = 2)az3|x|*7,
so that

div(A(z)Vw) = z1]2]* *[a + (N — 1+ a)(aB +a+ p)].

Given 0 < e < 1, if we choose a =1— N —¢, and § =
have

m +1, we
a+(N—-1+a)(aB+a+p3)=0,
so that w is a solution of (5.18) if x # 0. To prove that w® is a solution

in the sense of distributions in the whole R¥ let ¢ be a function in
C3(9), and observe that since |A®(z)Vw®| belongs to L'(Q), we have

A*(z)Vuw® - Ve = lim A*(z)Vuw® - V.
RN r=0% JRN\B,.(0)

Using Gauss-Green formula, and recalling that w® is a solution of the
equation outside the origin, we have

A*(z)Vuw® - Ve = — lim © A*(z)Vuw® - vdo,
RN r=0% J5B,.(0)
where v is the exterior normal to B,(0), i.e., v = Z. By a direct
computation,
A (z)Vuw© - —Qx |1,

withQ =1+af+a+ 3= —NT. Therefore, recalling the value of «,
and rescaling to the unit sphere,

N-11
—/ p A%(z)Vuw® -vdo = —/ o(ry)z, do.
9B, (0) € 1% JaBi(0)

Using again the Gauss-Green formula, we have

/ o(ry)rydo =r / e1 - V(rz) de,
8B1(0) B1(0)

where e; = (1,0,...,0). Therefore, since 0 < ¢ < 1, we have
lim e A% (x)Vu® - vdo = lim 7"1_5/ e1 - Vo(rz)de =0,
r=0% JaB,(0) r—0F B1(0)
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so that w® is a solution in the sense of distributions of —div(A*Vw®) =0
in the whole RY.

Let now Q = By(0) be the unit ball, and let v. be the unique
solution of

—div(A®(z) Vv©) = div(A®(z) Vzy) in Q,
v®* =0 on 0f),

which exists since div(A®(xz) Vay) is a regular function belonging to
H71(Q) (as can be easily seen). Therefore, the function 2¢ = v® + x;
is the unique solution in H'(Q) of the problem

{—diV(AE(J?) Vzf) =0 in{,

2 =1 on 0f),

so that the function u® = w® — 2° is a solution in the sense of distribu-
tions of

—div(A®(z) Vu) =0 in Q,
u® =0 on 0,

which is not identically zero since z¢ belongs to H'(£2), while w® belongs

to Wy(2) for every q < ¢. = 52— Hence, the problem

—div(A®(z) Vu) = f in Q,
u=>0 on 051,

has infinitely many solutions in the sense of distributions, which can
be written as u = u + tu®, t in R, where u is the duality solution.

One may observe that the solution found by approximation belongs
to I/VO1 9(Q) for every q < %, while the solution of the above example
belongs to Wol’q(Q) for some ¢ < %, and that we are not allowed to
take e = 0 since in this case a. diverges. Thus one may hope that there
is still uniqueness of the solution obtained by approximation. However,
it is possible to modify Serrin’s example in dimension N > 3 (see [6])
to find a nonzero solution in the sense of distributions for

—div(B*(z) Vu) =0 in Q,
u=>0 on 0,



42 5. NONUNIQUENESS FOR DISTRIBUTIONAL SOLUTIONS

which belongs to W,?(9), for every ¢ < 2. Here

1+ (a. — D)%y (ac—1)Z2 0

a:%«#xg x%Jra:g
22
B@) =1 (a.-1)3% 14—z 0 |
0 0 I

where [ is the identity matrix in RV=2, and a. is as above, with ¢ fixed
so that w®(z) = z; (v/2? + 22)*! belongs to W14(R?) for every ¢ < 2.

On the other hand, in dimension N = 2 there is a unique solution
in the sense of distributions belonging to W,%(€), for every g < 2. The
proof of this fact uses Meyers’ regularity theorem for linear equations
with regular data.

THEOREM 5.1 (Meyers). Let A be a matrix which satisfies (1.8).
Then there exists p > 2 (p depends on the ratio % and becomes larger

as § tends to 1) such that if u is a solution of (1.9) with datum f
belonging to L>®(2), then u belongs to W, *(Q).

THEOREM 5.2. Let N = 2. Then there exists a unique solution in
the sense of distributions of (1.9) such that u belongs to W,*(S2), for
every q < 2.

Proof. Since the equation is linear, it is enough to prove that if u
is such that

/A(x) Vu-Vo=0, VYopecCiQ),
Q

then u = 0. Since u belongs to W, 9(Q), for every ¢ < 2, it is enough
to prove that

/ A(z)Vu -V =0, Yo W,P(Q),
Q

for some p > 2, implies u = 0. Let B be a subset of (), and let vg be
the solution of

—div(A*(x) Vug) = Xp in (,
v=20 on 0f).

By Meyers’ theorem, vg belongs to I/VO1 P(Q2), for some p > 2. Hence

/ A(x)Vu - Vug =0,
0
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while, choosing u as test function in the weak formulation for vg (which
can be done using a density argument and the regularity of Vug), we

have
/A*(ac) VvB-Vu:/ u.
0 B

/ u=0, VBCQ,
B
and this implies u = 0. U

Therefore,






CHAPTER 6

Entropy solutions

As we have seen, uniqueness of solutions for distributional solu-
tions can fail even in the linear case if the regularity of the solutions
is not “enough” to allow the choice of less regular test functions. And
the lack of regularity of the solution of the counterexample by Serrin
(as modified in [6]) is exactly the one which is typical of the solu-
tions of equations with data in L'(2) or in M(Q). In the linear case,
however, the lack of uniqueness is avoided by using the concept of du-
ality solution, but it is enough for the operator to be non linear (say,
—div(a(z,u)Vu), with a a bounded function) in order to “lose” the du-
ality definition. This problem is much more evident for operators which
are nonlinear also with respect to the gradient. In this case, a further
condition on the solutions has been looked for, in order to guarantee
uniqueness (at least for the solutions obtained by approximation).

The first remark about solutions obtained by approximation is the
following (see the proof of Theorem 4.1): even though the solutions do
not belong to H(Q) (since they belong to W, 9(Q), for every ¢ < 25,
the truncates of the solutions are in the “energy space” Hj (), and
satisfy the following estimate

o [ 19T < il

In other words, the solutions are not in H{(2) “only” where they be-
come “infinite”. Since the function in the counterexample of Serrin
has not the truncates in the energy space Hj(£2), one may think that
the “correct” space where to look for uniqueness of solutions is the
following;:

7,7%(Q) = {u : @ — R measurable: Tj,(u) € H(Q), Vk > 0}.

This set of functions has a further property: that every function in it
has, in some sense, a “gradient”.

THEOREM 6.1. Let u belong to 7;"*(€). Then there exists a unique
(up to a.e. equivalence) measurable function v : 2 — RY such that

U X{ju|<k} = VTk(U), a.e. in Q, Vk > 0.

45
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Proof. In order to prove the result, it is enough to prove that the
function v, defined as VT (u) on the set {|u| < k}, does not depend
on k. Let T in Q be such that u(Z) = k. Then T belongs to the set
{lu(x)| < k + €} for every e > 0. Therefore, by definition,

v(T) = VT (u(T)), Ve>D0.
On the other hand, Ty (T (u)) = Tk(u), so that
Ve (Th(w)) = VIi(w),
which implies
Ve (u(@)) = Ve (Ti(u(@))) = VT3 (u(T)),
so that the value of v does not depend on . U

From now, we will define the gradient Vu of a function u in 7;"*(Q)
as the function v given by the previous theorem. It is easy to see that
if u belongs to W, (2), then the function v given by the theorem is
nothing but the “standard” distributional gradient of u.

Remark that 7;"*(Q) is not a vector space: there exist functions u
and v in 7;"*(Q) such that u 4 v does not belong to the same space. If
however u, v and u + v are in 7,"*(Q), then we also have V(u + v) =
Vu + Vo.

Even though the space ’261’2(9) seems the natural one where to look
for solutions, this is not the case: the fact that u in 7;"*(€Q) is a solution
in the sense of distributions is not enough in order to prove that it is

unique. In order to do that we need something more (and also the fact
that the datum belongs to L'(Q)), following [1].

DEFINITION 6.2. Let f be in L'(Q). A function u in 7,"*(2) is an
entropy solution of (1.9) if

(6.19) /A( Wu-VTp(u—¢ /ka u—¢
0
for every k > 0 and for every ¢ in Hg(Q2) N L>(9).

REMARK 6.3. Every term in (6.19) is well defined. The right hand
side is finite since Ty (u — ) belongs to L>°(€2), while the left hand side
is well defined since VT, (u—¢) is different from zero only if |u—¢| < k.
On this set, [u| <k + [|¢[|xq) = M, so that we have

/Q A(2)Vu - V(1 — ) = /{ L AT (D)~ ),

which is finite since u belongs to 7;"*(€2) and ¢ belongs to H{ ().

We now prove an existence result for entropy solutions.
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THEOREM 6.4 (see [1]). Let f be an L'(Q) function. Then there
exists an entropy solution u of (1.9).

Proof. As usual, we work by approximation. Let f, = T,,(f), and
let wu,, be the solution of

—div(A(z) Vu,) = f, in Q,
Uy, =0 on 0f).

Let k > 0. Taking T} (u,) as test function we obtain, using (1.8),

o / VTP < / A(2) Vi, - V() = / FuTi(n) < 11 Florgey

so that the sequence {T(u,)} is bounded in H}(Q) for fixed k. This
implies that there exists a function vy, in Hg(£2) such that, up to sub-
sequences, Tj(u,) converges to v, weakly in H}(Q) and strongly in
L*(2). From Remark 4.2 we know that u, converges to u (the unique
duality solution of (1.9)) strongly in W, 9(Q), for every ¢ < 2, and
that Vu,, converges to Vu almost everywhere in ). This implies that
T (u,) converges strongly to Ty (u) in L?(Q2), and so vy = Ti(u). Thus,
by Fatou lemma,

Q Q

n—-+4oo

which implies that u belongs to 7,"*(Q). We now fix k > 0, ¢ in
H}(Q) N L>*(Q), and choose v = Ty(u, — ) as test function in the
weak formulation (1.10) of (1.9), and we have

| A@Tu Vi =) = [ fuTulun =)

For the right hand side we have, by Lebesgue theorem,

lim AfnTk(un—w):Aka(u—w),

n—-+00

while the left hand side can be rewritten as
[ A@TTit— ) TTiun =)+ [ 4@ TTilu, - 0)
Q Q

The first term is nonnegative, so that the almost everywhere conver-
gence of Vu, to Vu implies, by Fatou lemma,

/A(x)VTk(u—g0)~VTk(u—g0) < lim inf /A(x)VTk(un—go)-VTk(un—w),

Q n—+oo [
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while for the second we have (thanks to the weak convergence of T} (u,,)
to Ti(u) in H}(Q))
[ A@9e Vi) = lm_ [ A2V VI, - o)
0 n—too Jo

Putting together these results, and cancelling equal terms, we have

LéM)VuVﬂu— (/fﬂu—

so that u is an entropy solution of (1.9). U

THEOREM 6.5. Let f be an L*(Q) function, and let u be an entropy
so]ution of (1.9) with datum f. Then u belongs to Wy%(Q) for every

q < 2=, and is a distributional solution of (1.9).

Proof. Taking ¢ = 0 in (6.19) we obtain, recalling (1.8),

o / VT () < / A(2)Vu - VTi(u / FT(w) < & (1o

From this inequality we can reason as in the proof of Theorem 4.1 to
obtain (4.16) for u, so that u belongs to W, 9(Q) for every ¢ < T

We now fix h > 0 and choose ¢ = T}, (u) as test function in (6.19).
We obtain

lém@vanw—nwngéfnw—ﬂw»

which can be rewritten as

/ AwvVaVu= [ ha-ne) <k [ g
{h—k<|u|<h+k} {lu|>h} {lu|>h}

Defining A, = {|u] > h}, we have that m(A,) tends to zero as h
tends to infinity (since u belongs to Wy (), hence to L'(2)). Since f
belongs to L'(Q), we have

lim /1 =0,
P00 Jjulzhy
so that, recalling (1.8)
(6.20) lim |Vul? = 0.
h—=+oo Jih—k<|u|<h+k}

Let now h > 0 and ¢ in C}(Q) be fixed, and choose ¢ = T}, (u)—1) as test
function in the entropy formulation (6.19) written for k& = [[¢)| ;o
We obtain
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Using Lebesgue theorem, and the choice of k, it is easy to see that
fim [ Tu =T+ ) = [ 1Tw) = [ 1o
h—+400 Q QO o)

As for the left hand side, using again the choice of k, we can rewrite it
as

/ A(x)Vu - Vi) + / A(x)Vu - VT (u — Typ(u) + ).
{lul<h} {|u|>h}

Since A is bounded, u belongs to W, () (actually, even better), and
¥ is in CF(Q), we have (by Lebesgue theorem)

lim z)Vu - Vi) = / z)Vu - Vi
hoeo {|u\§h}
On the other hand, since (again by the choice of k)
fJu—T(u) + 6] < b, ful > b} {h— 2% < Ju] < b+ 2k},
we have, by (1.8),

‘AMMJM@VUWHMU—EMQ+¢4

<p Vul([Vul + Vi),

{h—2k<Jul<h-+2k}
so that by (6.20) we have
lim A(x)Vu - VT (u — Th(u) + ) = 0.
P40 Jjulzn)

Putting together the results, we obtain

AA@vawgéfw

for every ¢ in Cj(f2). Exchanging ¢ with —t¢ we obtain the reverse
inequality so that u is a distributional solution of (1.9). O
Not only an entropy solution exists, it is also unique.

THEOREM 6.6. Let f be a function in L'(2). Then the entropy
solution of (1.9) is unique.

Proof. We present three proofs of this result.
1) An entropy solution is a duality solution. We fix g in L*(2), and
let v be the solution of

—div(A*(x) Vo) = ¢ in Q,
v=20 on Of).
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By Theorem 2.3, v belongs to L>®(2). Now we repeat the proof of
Theorem 6.5, choosing ¢ = Tj(u) — v in the entropy formulation, with
h>0and k = [[v]| o (q)- We obtain

/QA(x)Vu-VTk(u—Th(u)+v)g/ka(u—Th(u)—l—v).

As before, we have (by Lebesgue theorem and by the choice of k)

lim /kau—Th + ) /fv
h—+00

and as before the left hand side can be rewritten as
/ A(x)Vu - Vo + / A(z)Vu - VT (u— Th(u) +v).
{lu|<h} {|u|>n}

For the second term we can reason as in the proof of Theorem 6.5 to
have (using (6.20)) that

lim A(x)Vu - VT (u — Th(u) +v) =0,
h=400 J{jul=h}
while the first can be rewritten as

/{u|<h} A(x)Vu - Vo :/ A(z)VTy(u) - Vo

:/:A*(x)Vv-VTh(U)Z/QgTh(U)7

since Ty (u), being in Hg (), can be chosen as test function in the
problem solved by v. Thus, by Lebesgue theorem,

lim A(z)Vu - Vv = / gu.
Q

h=+00 J{|u|<h}

Putting together the results, we have

[os [ 1

Exchanging g with —¢g (and so v with —v, by linearity), we obtain the
reverse inequality, so that u is a duality solution of (1.9).

2) An entropy solution is a solution obtained by approximation. Here
we follow [5]. Let f,, be a sequence of L>(2) functions that converges
to f in L'(2), and let u,, be the solution of

—div(A(x) Vu,) = f, in Q,
Uy, =0 on 0f).
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By Theorem 2.3, u,, belongs to HJ(2) N L>(Q), so that ¢ = u, is an
admissbile choice in the entropy formulation for u. We then have

/QA(x)Vu-VTk(u—un)g/Qka(u—un).

On the other hand, Ty(u — u,) belongs to H}(f2), and so it can be
chosen as test function in the weak formulation for u,. We then have

/QA(;E)Vun VT — ) = /Q £ Th( — ).

By subtracting the above results, we have

/QA(x)V(u —up) - V(v —u,) < /Q(f = Jn) Ti(u — uy),

and using (1.8) we obtain

a[ﬂvnw—uwFSknf—nmmn

Letting n tend to infinity, we have that Ty(u — u,) tends to zero in
H}(Q), and this implies that u,, converges to the entropy solution wu.
Since solutions obtained by approximation are unique, the entropy so-
lution u is unique.

3) There exists at most an entropy solution. Here we follow [1]. Let u
and v be two entropy solutions of (1.9), with the same datum f, and
let A > k > 0. Then ¢ = T}, (v) is admissible in the entropy formulation
for u, and ¢ = Tj(u) is admissible in the entropy formulation for w.
We thus obtain

/A( )W - VTi(u— T (v /kaU_Th v)),
and )
/A( )WV - V(v — Ty(u /kaU_Th u)).
Summing tﬁe two inequalities, we obtain
/ A(@)Vau - VTi(u — Th(v)) + / A(2)Vo - V(v — Th(u))
in the ﬁeft hand side, and )

Aﬂnw—ﬂ@»+ﬂw—nwm

in the right hand side. Since T(s) is an odd function, we obtain, by
Lebesgue theorem,

lm!Aﬂﬂm—ﬂ@D+H@—ﬂwm:Q

h—+o0
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so that
limsup/A(x)VwVTk(u—Th(v))—i—/A(:c)Vv-VTk(v—Th(u)) <0.
h—+o00 JQ Q

For the sake of simplicity we will suppose from now on that v > 0 and
v > 0, since the proof turns out to be considerably simplified. We refer
to [1] for the proof in the general case of changing sign solutions. We
write

Q={u<h v<hlU{u>h, v<hlu{v>h}=EUF'UF}
and
Q={v<h, u<hlU{v>h, u<h}lU{u>h}=E'UFIUF"
We then have
/ A(x)Vu - VT (u—Th(v)) = / A(x)Vu - VTi(u — v),
Eg By
and, analogously,
/ A(2)Vo - V(v — Th(u)) = / A(2)Vo - V(v — u),
B B
On the other hand,
A(@)Vau - VTi(u — Th(v)) = / A@)Vau - V(u—v):

{ u>h, v<h

h
F1 0<u—v<k

on the set {u > h, v <h, 0 <u—wv <k} wehave both h <u<h+k
and h — k < v < h, so that

<p [Vu||[Vol.
{ h<u<h+k
h—k<v<h

/F @)V VT~ Ti(v))

Using (6.20) for both u and v we have
lim Vul> =0= lim Vo2,
h—+o0 Jrh<u<hik} h=too Jip_k<v<n}

so that, by Holder inequality, we have
lim / A(@)Vu - VTi(u — Ty(v))| = 0:
h—+o00 F1h

repeating the same proof, we have

lim /F (@) Vo V(o — Ti(w))| = 0

h—4o00

3
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Furthermore,

/ A(x)Vu - VT (u—Th(v)) = / A(x)Vu-Vu >0,
Fh ogzzZ+k

and analogously

m@vnvn@—jumyi/ AWV Vo0

h
Fy 0<v<h+k

Putting the results together, we have
lim sup / A(x)V(u —v) - VI (u —v) <0,
h—+00 Eh

which, by Fatou lemma, implies, since E? “fills”  as h tends to infinity,
0< / A(z)V(u —v) - VTg(u —v) <0.
Q

This, and (1.8), imply VT;(u —v) =0, and so u = v. O
What happens if the datum f is the Dirac mass concentrated at one

point in 2?7 In this case the definition of entropy solution is no longer

enough to guarantee its uniqueness, as the following example shows.

EXAMPLE 6.7. Let Q = B;(0) be the unit ball in RY, N > 3, and
let u(x) be the unique duality solution of

(6.21) —Au =4y inQ,
' u=20 on 0.
. . . ‘x|27N 1
It is well known that u(z) = u(|z|) = ooy and that u is the limit

of the sequence u,, of solutions of

—Au, = f, in Q,
Uy, =0 on 0f),

with f, = ]i}’;vN in the ball B1(0), and f, = 0 elsewhere. Since w,, is
radially symmetric, it can be easily calculated, obtaining that

u@q:{ u() in By(0) \ By (0),

v nN-2_ .
——n]x\Q + —é\([N—2)wfr in B%(O).

If ¢ belongs to H}(Q) N L>(Q), k is fixed and n is large enough, we
thus have Ty (u, — ¢) = k in B1 (0), and so
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Passing to the limit on n as in the proof of Theorem 6.4, we thus have

/QVU-VTk(u—go) <k="T(u—p)(0) :/ Ti(u — @) ddy,

Q

so that u is an entropy solution of (6.21). Observe that

/Q Ty (u — @) dog

is well defined since Ty (u — ¢) is continuous (being constantly equal to
k) in a neighbourhood of the origin. Let now A < 1, and consider the
function uy = Au. We have

k
/Vu,\-VTk(uA—ga):/@/ VU-VT@(U—f)S/\Q—:)\kSk,
Q QO A A A

so that also u, is an entropy solution of (6.21).

If, instead of passing to the limit as in the proof of Theorem 6.4
(i.e., dropping a nonnegative term), one performs explicit calculations,
one finds that u is such that

(6.22) /Q Vu-VTi(u— ) :k:/Q Ti(u — ) ddy,

for every o in H(Q) N L>®(2); in other words, the duality solution of
(6.21) is an entropy solution with equality sign, while of course u, is an
entropy solution with inequality sign for every 0 < A < 1. Therefore,
one may wonder whether uniqueness can be recovered for measure data
by requiring that u is an entropy solution “with equality sign”. Indeed,
this is not the case; to see it, let v, be the duality solution of

—Av, =6, in Q,
v, =0 on 0,

where a is a point in 2 (different from the origin). Performing the same
calculations as above, we find that

/ Vo, - VTi(v, — ) =k = / Ti(vy — @)ddy,
Q Q

for every k > 0 and for every o in Hj(Q) N L>®(Q). Consider now
w = u + v,. Clearly w is the duality solution of

—Aw =y + 9, in €,
w=20 on 02,
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so that, once again, for every k > 0 and for every ¢ in HJ(Q2)NL>(Q),
we have

/Vw-VTk(w—go):2k:/Tk(w—g0)d((50+6a).

However, since w “explodes” both at the origin and at a, we have (if
0<A<2)

/ Th(w — @)d(Ap + (2 — Nd6,) = M + (2 — Ak = 2k,

so that w = u + v, is an entropy solution, with equality sign, of the
equation
—Aw = A5+ (2= A)J, in Q,
w =70 on 0f2.

This equation, however, also has as entropy solution with equality sign
its duality solution z = Au+ (2 — A)v, (or any other linear combination
of u and v, with coefficients v and 2 — v, 0 < v < 2).

REMARK 6.8. Let f belong to L*(Q), and let u be the (duality, en-
tropy, found by approximation) solution of (1.9). If we use the entropy
formulation, written for ¢ = 0, we have

/Q A(2)VTy(u) - VTi(u) = /Q A(2)Vu - VTi(u / f To(u

Dividing by k, and then letting &k tend to infinity, we have, by (1.8)
and by Lebesgue theorem,

i 1 T (
o< tim 7 [ AVEQ)-VE@ < i [ 77 -
In other words,
1
(6.23) lim —/ A(x)Vu - Vu = 0.
{lul<k}

k——+o0

If, instead of ¢ = 0, we choose ¢ = Ty(u), we find (with the same
calculations)
1
(6.24) lim —/ A(x)Vu-Vu =0.
{k<|u|<2k}

k—+oo k

This formula, and (6.23), state that, even though the quantities

/ A(x)Vu-Vu and / A(x)Vu - Vu
{lul<k} {k<|u|<2k}}
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do not remain bounded as k tends to infinity (since the solution u does
not belong to HJ(£2), but to a larger space), a suitable “rescaling” of
them not only remains bounded, but converges to zero.

If, instead of taking an L'(2) function, we consider a Dirac mass
as datum, this fact is no longer true. Take for example 2 = B;(0) and
consider the unique duality solution of

—Au =9y in Q,
u=>0 on Of).

a2~ N1

(N—Don If we fix

As stated in Example 6.7, we have u(z) = u(|z|) =

k > 0, then
To(u) = v in B1(0)\ B,,(0),
"7k in B, (0),
2—N
where r; is such that ﬁ = k. If we calculate the “energy” of

VT, (u), we have

1 2—-N
/ |Vul? = / Vul? = W_JQV / N dp = /Rl k,
{lul<k} B1(0)\Br, (0) Wy Jr, (N —2)wy

so that, even though the “rescaled” energy is bounded, we have

1
lim —/ |Vul* = 1.
k=too K J{ju<y

An analogous calculation yields

1
lim —/ Vul? = 1.
h=too b Jin<iul<an)



CHAPTER 7

Decomposition of measures using capacity

What is the difference between a measure in M(2) and a function
in L'(Q)? For example, between a Dirac mass concentrated at the
origin and the function m? As we have seen, both the Dirac
mass and f yield a solution which only belongs to W, () for every
q < %, but in the case of the L!'(Q) datum a certain “energy”,
when renormalized, tends to zero (while it is constant for the Dirac
mass). While the vanishing of the renormalized energy happens for any
L'(Q) datum, one may wonder for which measures the “Dirac mass”
phenomenon happens. Before answering to this question we need some

(more!) tools.

1. Capacity

Given a subset F of 2, we define the (harmonic) capacity of E as

cap(F) = inf {/ Vol v € Hy(Q), > XE} .
Q

The set function cap(-) is not a measure on 2, nor it is bounded (if F
“touches” the boundary of {2 the set of functions in Hg () greater than
Xp is empty, so that the infimum is +o00). It is however a monotone
and o-subadditive set function, in the sense that

+o00 +oo
cap(U En> <> cap(Ey).
n=1 n=1

If E is an open subset of ), then the infimum in the definition of
cap(F) is actually a minimum, which is achieved on an H{(£2) function
ug, which satisfies 0 < ug < 1in Q. If K is compact in €2, then cap(K)
can be obtained by taking the infimum of the “energy” of ¢ over the
functions ¢ in C}(Q) which are larger than X .

Recalling the Sobolev embedding, if ¢ is a function in Hj(€2) which
is larger than X g, we have

£Y(E) < / o2 < / B
FE Q
57
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Taking the infimum on the right hand side, we thus obtain

—2

LY(E) < 82 (cap(E)) 7,

so that sets of zero capacity have also zero Lebesgue measure. As a
matter of fact, sets of zero capacity are “thinner” than sets of zero
Lebesgue measure: they have Hausdorff dimension smaller than N — 2.

Even though capacity is not a measure, one can always decompose
measures with respect to it.

THEOREM 7.1. Let pu be a measure in M(€)). Then there exists a
unique pair (pu, \) such that u = po + A, and
cap(B) =0= po(B) =0, A=pul E, with cap(E) = 0.
Proof. See the proof of Theorem 3.1, and remark that we only used
the o-subadditivity of v in order to prove it. O

Since every set of zero capacity has zero Lebesgue measure, it is
clear that if f belongs to L'(€2) then the measure u defined by

B)= [ fa)as

is such that cap(B) = 0 implies u(E) = 0, so that pop = p. On the
other hand, if 4 = J,,, the Dirac mass concentrated at xg, then since
cap({xo}) = 0, we have that u is singular with respect to capacity, and
so A = p. There is however another set of measures such that ug = p.

THEOREM 7.2. Let 1 be a nonnegative measure in H=1(Q), i.e., a
measure such that there exists T in H=*(§)) for which

(T, ) = /Q pdu, Yy € Hy(Q).
Then cap(B) = 0 implies u(B) = 0.

Proof. Since cap(B) = 0, there exists a sequence ¢, in Hj(2) such
that

/ Ve.l> <e, ¢ > Xg.
Q
Let u be the solution of
—Au=p in §,
u=20 on 0f2,

which exists since u belongs to H~(€2). Taking ¢. as test function, we
obtain (recalling that p > 0 and using Holder inequality),

0<u(B) < [ pdu= [ Vu- Ve <OVE
Q Q



1. CAPACITY 59

so that, letting ¢ tend to zero, u(B) = 0. O
As a consequence of the previous theorem, if we define the set of
“soft measures”

Mo(Q2) = {p € M(Q) : u(B) =0 VB : cap(B) = 0},
and the set of “singular measures”
M(Q) ={pe M(Q): p=pl E with cap(F) = 0},

we have that L' (Q)+H~1(Q) C My(Q). Note that there exist functions
in L'(Q2) which are not in H~*(Q) (for example, f(x) = 1

- \I|N10g2(\$|))’
and measures in H~(Q2) which are not in L'(Q) (for example, the
(N —1)-dimensional Hausdorff measure restricted on an hypersurface of
codimension 1 in RY), but that the intersection of L'(Q2) with H~1(£2)
is not {0} (for example, L?*(Q) is a subset of both spaces). The “nice”
fact is that the opposite inclusion holds.

THEOREM 7.3. Let pu be a measure in M(Q2). Then p belongs to
L) + HY(Q) if and only if u belongs to Mg(<2).

Proof. See [2]. O
Therefore, given a measure pu in M(2), we can first decompose it
(uniquely) as

w=po+ A po € Mo(R2), A € M(Q),

and then we can further decompose it (not uniquely, as far as pg is
concerned) as

p=f+T+AX" =X, feLYQ), TcH ), \ec MQ).

The question is now the following: we have uniqueness of entropy
solutions for L'(f2) data, and we have uniqueness of solutions (hence
of entropy solutions) for H~(Q) data (by Lax-Milgram). Thus, by
linearity, we have uniqueness of entropy solutions for data in Mq(€2).
We know that if the datum is 0y we have counterxamples to uniqueness
due to the nonvanishing of a certain renormalized energy (see Remark
6.8), and we know that dy belongs to M(€2). Is the renormalized
energy nonvanishing for every measure in Mg(2), or is the Dirac mass
a special case?






CHAPTER 8

Renormalized solutions

The result obtained in Remark 6.8 can be improved: not only a
certain renormalized energy remains constant as k diverges if the datum
is a Dirac mass, but we can also “recover” the datum from it.

As stated in Remark 6.8, if u is the duality solution of —Au = &y,
ie.,

|$|2—N -1

= N e

then the sequence %Xﬂqﬂgk} is bounded in L'(Q) (since it has “mass”
equal to 1 for every k), so that (up to subsquences) it converges to
some measure A in the weak* topology of measures. We are going to
prove that A\ = Jg, so that the measure datum can be in some sense
“reconstructed” by a suitable rescaling of the “energy” of the solution.
If ¢ is a fixed continuous function, we have

1 1
i vl o2 () do
{lul<k} wi B1(0)\B,, (0)

where 7 is such that u(ry) = k. Passing to spherical coordinates we
have

: /
— |Vul? o = o)dpdo.
K Ju<iy kwN SN-1

Defining y = £, we then have

1 2 N Tk
! / Vufp = / / o(riy, o) dy do.
k J{ui<ky sN-1

Since 7y tends to zero for every fixed y in (1,+00), since ¢ is con-
tinuous, and since y'~" belongs to L!(1,+o0), we have (by Lebesgue
theorem)

1

T

+oo
. k _ _
lim v No(ry, o) dy = ¢(0) / y N dy = —;
1 1

k—+o00
61



62 8. RENORMALIZED SOLUTIONS

on the other hand, by definition of ry,
rz_N N —2

so that

as desired. A similar calculation yields

1
lim —/ Vul? o = ¢(0).
koo ki {ksluls%}‘ | ©

We will use this fact to give a new definition of solution for (1.9).

1. Renormalized solutions

The results of this section are contained in [4].

DEFINITION 8.1. A function u in L*(Q) is a renormalized solution
of

—div(A(x)Vu) = p=po+ AT = A" in Q,
u=>0 on 0f),

if u belongs to Wy () for every ¢ < 2, and if

| A@9u- Vi) = [ hyedug
s +S;ﬁ°° / d\T — / od\~,

for every h in W1°°(R) such that supp(h’) is compact, and for every ¢
in C}(Q); here h*>° are the limits of h at 400, respectively. If h(0) = 0,
one may choose ¢ in C'(Q2), while if A has compact support, one may
choose p in H}(Q) N L>(Q).

What is the meaning of (8.25)? It more or less says that h(u) =
h*t° AT almost everyhwere, and that h(u) = h™°°, A~ almost every-
hwere, which means that © = 400 on the support of A\. If we take
h(s) = Ti(s), and suppose that g = f + A\, with f in L'(Q) and A
singular and nonnegative, we obtain

| A@ve-v@we) = [ rRte+k [ ear
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which can be rewritten as

l[)A(x)ka(u)-VTk(u)¢+%/A(x)Vu'VsDTk(u)

k Q
— 5 [Tt [ pan

Letting k tend to infinity, the second and third term converge to zero,

so that
1

lim —/ A(z)Vu-Vu :/ d,
k=00 K juj<ky ) I

which means that a renormalized solution allows to “reconstruct” the
singular part of the datum as limit of some rescaled energy (as hap-
pened for the laplacian and for the Dirac mass as datum).

We are going to prove an existence and uniqueness result for renor-
malized solutions of (1.9) with nonnegative data. In order to simplify
the presentation, we will limit ourselves to the case of a nonnegative
datum g of the form p = f+ A, with f a nonnegative function in L!(),
and A a nonnegative bounded Radon measure concentrated on a set £
of zero harmonic capacity. The (much longer, and involved) proof can
be found in [4].

To prove the result, we need to define suitable cut-off functions.

THEOREM 8.2. Let A be a nonnegative measure in M(2), concen-

trated on a set E of zero capacity. Then, for every § > 0 there exist a
function 15 in C§(§2) such that 0 < 15 <1,

[ 1w <
Q
and
(8.26) 0< /(1 AN <.
0
Proof. See [4]. O

We will consider a sequence u, of solutions in Hg(2) N L>(2) of

(8.27) —div(A(2)Vuy) = fo+ Ay in Q,
up =0 on 09,

where f, is a sequence of nonnegative functions in L*°(€2) that con-
verges to f in L'(Q), and )\, is a sequence of nonnegative functions
in L>(2) that converges to A in the narrow topology of measures, i.e.
such that
lim / fnp :/ wd\, Vo€ CpQ).

Q Q

n—-+00
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The solution u,, of (8.27) exists and is unique, and is nonnegative since
the datum f,, + A, is nonnegative.

In the next result we recall some of the properties of the sequence
Up.-

THEOREM 8.3. The sequence u, is bounded in Wy%(Q), for every

- and the sequence Ty (u,) is bounded in HZ (). Furthermore,

N
N-1’

such that (up to subsequences) u, converges to u weakly in W,*(Q);
moreover, u,, and Vu, converge to u and Vu almost everywhere in €,
respectively.

Proof. The fact that Ty (u,) is bounded in H}(), and that wu,, is
N

bounded in W;(Q), for every ¢ < ~7, follows from the result of
Theorem 4.1. From standard compactness results for Sobolev spaces it
then follows that (up to subsequences) u,, weakly converges to some u
in W, 9(Q), and that it converges to the same function almost every-
where in €. Therefore, it only remains to prove the almost everywhere
convergence of Vu, to Vu. Observe that Remark 4.2 is no longer
applicable since A, is not a Cauchy sequence in L'().

In order to prove this result, we are going to prove that

q < N—1’
there exists a function u belonging to VVO1 “9(Q), for every q <

[NIES

(8.28) lim [A(z)V (u, —u) - V(u, — u)]

n—-+4o0o Q

=0,

which, in view of (1.8), will imply the convergence of Vu, to Vu in
(L(92))Y (hence the almost everywhere convergence of Vu,, to Vu up
to subsequences). If we define

U, (x) = A(x)V(u, —u) - V(u, —u),

then, if £ > 0 is given,

Q {lul<k} {lul>k}

N

We have, recalling (1.8), and choosing 1 < ¢ < 5+,

Jup < 2 ( [ v |Vu|q>) " n({Ju] > k)
{|u|>k}

Since u,, is bounded in VVO1 9(€)), and u belongs to the same space, we
thus have )

0 < Jgp < Cm({Jul > k})' 2.
Since u belongs to L'(€), this implies

(8.29) lim  lim J,, =0.

k—-+oco0 n——4o0
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For I, we have, since U, (z) is nonnegative,

[N

L= / AV (1t — T (1)) - ¥ (1 — Tiw))]
{lul|<k}

< / [A(2)V (1, — T(w)) - V (11, — T ()]} = L.
Q

Given € > 0 we then have

L, 1 =/ [A(2)V (u, — Ti(w)) - V(up, — Tk(u))]%
{lun =Ty (w)|<e}
+ [A(2)V (un, — Ti(w)) - V (u, — Ti(w))]?
{lun =T (u)|>e}
= Mn ke + Nn,k’,a-

For N, . we have, using again the boundedness of u,, in VVO1 (), and
the fact that u belongs to the same space,

_1
Nn,k,e < C’m({|un — Tk(u)\ > 8})1 a,
which implies, since u,, converges almost everywhere to u,

(8.30) lim lim lim N,;.=0.

e—0t k—+oco0 n—+o00

For M, 1. we have

Myke < (/{M_Tk(u) A(@)V (up = Tii(u)) - V (un — Tk(U))) % m(Q)?,

|<e}

so that we only have to deal with

Pog. — / A(@)V (- To(w)) - Vit — T(w),
{|un—Tk(

u)|<e}

which we rewrite as
Pope— /Q A(2)V (t, — To(w)) - VT (up — Th(u))
_ /Q A() Vit - VTt — To(w))

- / A(2)VTi(u) - VT (1t — To(0)) = Quis + R

We have, thanks to the fact that T (u,) weakly converges to Ti(u) in
Hy (),

n—-+o0o

lim Ryp. — /Q A(@)VTk(u) - VT (1 — Te(u)) = 0,
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since u— Ty (u) = 0 on the set {|u| < k} where VT (u) is different from
zero. Thus,

(8.31) lim lim lim R,x.=0.

e—0t k—+4oc0 n—+o0

To deal with @, 1, we use (at last!) the equation, to obtain

Qnke = /Q(fn + An) Te(un = Ti(w) < & ([ fnll 1) + 1Anll L)),
which implies

(8.32) 51ir(l)1+ kEIEoo nEI—Ts-loo Qnre = 0.
Putting together (8.29), (8.30), (8.31) and (8.32) we thus have (8.28),
as desired. U

REMARK 8.4. One may wonder why there is need to prove the
almost everywhere convergence of the gradients of u,: the equation
being linear, boundedness in a Sobolev space is enough to guarantee
weak convergence, hence passage to the limit in the approximate equa-
tions. However, if we take h(u,) ¢ as test function in (8.27), with A
and ¢ as in the definition of renormalized solution, we have

/ A(x)Vun-Vunh’(un)go—i—/ A(x)Vu,-Voh(u,) = /(fn+)\n)h(un)g0,
Q Q Q

and it is clear that to pass to the limit as n tends to infinity in the first
term we need the strong convergence of u,, in some space (to be precise,
since h' has compact support, the strong convergence of the truncates
of u,); using weak convergence, we will only obtain an inequality (as
is for entropy solutions), which is not enough for our purposes. And
indeed, we are going to prove that T (u,,) strongly converges to Tj(u)

in H}(Q).

LEMMA 8.5. Let g, be a sequence of nonnegative functions in L*(§2)
that converges almost everywhere to some function g in L*(Q2). If

(8.33) lim gn:/g,
Q Q

n—-4o0o
then g,, converges to g in L*(§2).
Proof. We have

/ l9n — 9] = /(gn —9)+ 2/(9 — Gn)X{0<gn<g}-
Q Q Q
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The first term tends to zero by (8.33), while the second one tends to
zero by Lebesgue theorem, since (g — g»)X{o<g. <} tends to zero almost
everywhere, and

(g — gn)X{0§9n§9}| < 2g,
with 2¢g in L'(Q). O
THEOREM 8.6. Let u,, be the solution of (8.27), and suppose that it

satisfies all the properties stated in Theorem 8.3. Then Ty (uy,) strongly
converges to Ty(u) in H} ().

In what follows, we will denote by w(n, j,d) a quantity such that

lim lim lim w(n,j,6) =0.
§—0t j—+o0on—+oo

Should we not take one or more of the limits, we will only write the
dependance of w(+) from the variables that go to the limit. Analogously,
we will denote by w;(n) and w;s(n) some quantities such that

nEToo w](n) =0, nEIEoo wj’(S(n) =0,

for every j > 0 and for every § > 0.

Proof. We will split the proof in several steps.
Step 1. Let 0 > 0, and let 15 be given by Theorem 8.2. Then

J

Let §;(s) = %Tj(Gj(s)), and choose (;(u,)(1 — 1)s) as test function in
(8.27); we have
1

j /{jéwﬁj} AVt - Ven(l = 5) = /QA(CC)V% - Vs B ()

_ / FuB () (1 — ) + / Mol () (1 = 15).
Q Q

Since 5 is in C}(Q), u, is bounded in W,*(Q) for some ¢ > 1, and
Bj(uy,) converges weakly* in L>(£2) to 3;(u), we have

(831  o0<? / A(#) Vit - V(1 — ) < w(n, j, ).
{7<un<2j}

/ A(x)Vu, - Vipsfbi(u,) = / A(z)Vu - Vipsf;(u) + wjs(n);
Q

Q

since f;(u) tends to zero weakly* in L>(Q2) as j tends to infinity we
then have

/Q A(2) Vg - V0555 (un) = ws(n, 5).
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Analogously (since f,, converges to f in L'(Q)), we have

/Q FuB () (1 = ) = wi(n, 5).

As far as the last term is concerned, we have, since 0 < 3;(u,,) <1,

og/ﬂAn@-(un)(l—w S/Q)\n(l—?/)a)-

Since A, converges to A in the narrow topology of measures, we have,
by (8.26)

/Q)\n(l —s) = /Q(l — 5)dA + ws(n) < w(n,d).

Putting together the results found so far, we obtain (8.34).
Step 2. Let 0 > 0 and let ¢5 be the function given by Theorem 8.2.
Then, for every k > 0,

(8.35) /QA(x)VTk(un) - VTi(up)ts = w(n,d),
and
(8.36) /Q (h — To(un)) s hn = w(n, 5).

In order to prove this result, we choose (k — Tj(u,))1s as test function
in (8.27), to find (recalling that w, > 0)

N /Q A(@)V T () - VT (wn)s
+ /Q A(@) Vi, - Vs (k — Ti(uy))

- /an(k — Ti(up))s +/Q)\n(k = T (un) ).

For the second term we have, since k — Tj(u,) is different from zero
only where 0 < u,, < k,

/ A(2) Vi, - Vibs(k — Ty(u)) = / A(2)VTi(wn) - Vb (k — Tio(un)).
Q Q

The weak convergence of Ty (u,) to Ti(u) in H(Q2) (as well as the
L*>(Q) weak* convergence of k — T}, (u,) to k—Ty(u)), allows us to pass
to the limit on n, obtaining

/Q A(2) VitV iy (k=T (1)) = /Q A(2) VT (1) Vs (k=T (1) -5 ().
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Since Tj(u) belongs to H}(Q), k — Ti(u) belongs to L=(Q), and 15
tends to zero in the same space, we then have

/QA(x)Vun -Vps(k — T(uy,)) = w(n, o).

The fact the f, converges to f in L'(Q) (together with the L>(£2)
weak* convergence of k — Ty (u,,) to k — Tj(u)) implies that

/fn k Tk: un wé /f k Tk’ 5—{—@)6(’)7/)’
so that the L>°(Q) weak* convergence of 15 to zero implies
/ folk = Ty (up))tbs = w(n, d).
Q

Using these results, we therefore have

/ A()V k() - VT ()0 + / Ml — T (1) s = w(n, 6),
Q

Q

so that (8.35) and (8.36) follow observing that both terms above are
nonnegative.
Step 3. For every k£ > 0 we have

/Q A(2) VT () - V() (L — )
= /QA(ZL")VT;C(U) - VTi(u)(1 —1s) + w(n, ).
In order to prove (8.37), we begin by proving that
A(x)VT(uy) - VT (up) (1 —s) — [ A(x)Vu - ViosTi(u
(838)/Q<><> ()1 = ) = [ A@)Vu- VesTi(w)
= [ @0 = )+ wt0.0).
To do this, we choose Ty (u,)(1—1s) as test function in (8.27), to obtain
/Q A(2) VT (1) - V() (1 = tb5) — /Q A@) Vi - VibsTi (1)
— [ BBu) (1= )+ [ AT (1 - vo)
Q Q

The fact that u, converges to u in Wy%(Q) (for some ¢ > 1), that
Ti(u,) converges to Ti(u) in the weak* topology of L*(£2), and that
s is in C}(Q) implies

/QA(J:)Vun - VsTy(uy,) = / A(x)Vu - ViosTi(u) + ws(n).

Q

(8.37)
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Analogously, we have

Aﬂmmmu—ww:lﬁnwm—ww+wmx

while, by (8.26),

0< /Q)\nTk(un)(l —1s) < k/Q(l — 5)d\ + ws(n) = w(n,d).

Putting together the results, we find (8.38). The proof of (8.37) will
be complete once we prove that

/ A(@)VT(w) - VTo(u)(1 — tig) — / A(2) V- Vs T ()
(8.39) o 0
=Afnwmfwm+m&

In order to do that, we choose (1—(3;(u,))Tk(w)(1—15) as test function
in (8.27), where (3;(s) has been defined in Step 1. We have

1
@Y Ve - )
J {jgun SQJ}

+Am@wwvnmm—@wm0—%>
_ /Q A@) Vg - Vips(1 — B(w,)) Ti(w)

_ /Q Fa(1 = B(wn)) Ti(u)(1 — t5)
+ /Q Aa(1 = B () Tic(w) (1 — 05).

For the first term we have, by (8.34),
1
] AW VT - ) < hen..0).
J J{i<un<2;}

For the second term, since 1 — (3;(u,,) is different from zero only where
0 <u, <27, we have

/Q A(z)Vu, - VTi(u) (1 = B;(un)) (1 — 15)

A()Vu - VT (u)(1 = f;(u))(1 = 9s) + w;s(n)

1
S—S—

A(@)VTi(u) - VTi(u) (1 = B;(u))(1 = ¥5) + wjs(n).



1. RENORMALIZED SOLUTIONS 71

Since T}, (u) belongs to H}(2), and since 1 — 3;(u) tends to 1 in L*>(Q)
weak*, we then have

/Q A) Vg - V() (1= B;(1)) (1 — 1)
_ /QA<J;)VTk<u> -V T3()(1 - 1) + wa(n, j).

For the third term we have, since u, converges to u weakly in W, ()
(for some g > 1), and since 15 belongs to C2(Q),

/Q A@)V, - Vs(1 = B;(un)) Ti(u)
— /QA(x)Vu - Vibs(1 — Bj(u) Ti(u) + wjs(n)
= /QA(:E)VU . V¢5Tk(u) + W&(naj)a

where in the last passage we have used again that (3;(u) tends to 1 in
L>(Q2) weak*. For the fourth term we have

/Q Ful1 = By () Tu(u) (1 — 05)
- / FU = 35(0) T (w)(1 — ) + wya(n)
= /Qka(u)(l — 1) + ws(n, J),

while for the fifth term we have, by (8.26),

0< [ ML= BT =69 < [ A1 = 1) = w(n,5)

Q

Putting together the results, we obtain (8.39). Comparing (8.38) and
(8.39) we obtain (8.37).
Step 4. We have

(8.40) /Q A()V Tk () - V() = /Q A(@)VTk(w) - VTa(u) + w(n).

In order to prove (8.40), we use 15 and (1 — v)s5). By (8.35), proved in
Step 2, we have

/Q A(@)V Ty () - V()i = w(n, o),
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while the fact that Tj(u) belongs to H}(Q), and the fact that 15 tends
to zero in L>°(§2) weak® implies

/QA(:E)VTk(u) - VT (u)hs = w(9).

Therefore, in order to prove (8.40) it only remains to prove that
Q

_ /Q A(2)VTi(u) - VTi(u)(1 — 5) + w(n, 6),

which is exactly (8.37).
Step 5. The sequence Tj(u,) strongly converges to Ty(u) in H}(Q).
Since Vu,, converges almost everywhere to Vu, we have that

A(x)VTi(uy,) - VTi(uy,) tends to A(z)VTi(u) - VIi(u),

almost everywhere in Q. Since A(z)VTy(u,) - VTi(uy,) is nonnegative,
this convergence and (8.40) imply by Lemma 8.5 that

A(x)VTi(uy,) - VTi(u,) converges to A(z)VTi(u) - VIi(u),
strongly in L'(Q). Therefore, by Vitali theorem,
{A(2)VTy(u,) - VI (u,)} is equiintegrable.

Using (1.8), this implies that the sequence {|VT}(u,)|*} is equiinte-
grable. Since VTy(u,) converges to VTi(u) almost everywhere in €2,
we have (again by Vitali theorem) the strong convergence of Ty (u,) to
Ti(u) in HY(Q), as desired. O

THEOREM 8.7. There exists a renormalized solution of (1.9).

Proof. Let h and ¢ as in Definition 8.1, and choose h(u,) ¢ as test
function in (8.27). We obtain

/ A(x)Vuy, - Vu, b (u,) ¢ + / A(x)Vuy, - Vo h(uy,)
0 Q

:/an h(un)QO—F/Q)\nh(un) .

For the second and third term we have

/QA(x)Vun -V h(uy,) = /QA(:U)VU -V h(u) + w(n),

/Q Fu hlun) ¢ = /Q o

and
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since h(s) is bounded, ¢ is regular, and w,, converges to u strongly in
Wy (Q) (actually, better) and almost everywhere. For the first one,
since h/(s) has compact support (say, [—M, M]), we have

/Q A(2) Vi, - Tty B (1) 0 = /Q A(2)V Ty (1) - VT () B (1) 0,

and so

/QA(:E)Vun ~Vun M (uy) o = / A(x)Vu - Vul'(u) o +wn),

Q

by the strong convergence of the truncates, the boundedness of A'(s)
and the regularity of ¢. For the last term we have

/Q)\nh(un)gO:/Q)\n (h(un)—h+°°)<,0+h+°°/ﬂ/\n<p
_ /Q Ao (Bug) — B7) 0 iyt
= [ bt = 1) (1= ) 0 [ A

Since h'(s) has compact support, there exists K > 0 such that |h(s) —
ht*| < K — Tk(s), so that

/Q M () — ) 005

by (8.36). Furthermore,

<C / M (K = Tic () 15 = w(n, ),

/Q/\n(h(un) — ") p(1 — 1b5)

SO/Q/\n(l —%)
:C/Q(l — hs)dA + wy(n) = w(n, ),

by (8.26). Therefore,

/Q)\nh(un)gozh+oo/ﬂg0d)\+w(n).

Putting together all the results, we have that u is a renormalized solu-
tion of (1.9). O

We are now going to prove that every renormalized solution is a
duality solution, so that uniqueness of renormalized solutions will fol-
low from uniqueness of duality solutions. Before the proof, we need a
further result.
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THEOREM 8.8. Let u be a renormalized solution of (1.9). Then

1
(8.41) lim —/ A(a:)Vu-Vugo:/god)ﬁ,
k—too K Jip<u<on Q
and
1
(8.42) lim —/ A(:U)Vu~Vug0:/g0d>\,
k—too ki Ji _op<u<—iy Q

for every ¢ in C°(9).

Proof. For the sake of simplicity, we suppose that o = f, a function
in L'(Q). Let hy(s) : R — R be defined by hy(s) = +Tx(Gr(s)), ie.,

0 ifs<k,
hi(s) = E if k < s <2k,
1 if s > 2k,
1’ 77777777777 i
| k ok

and choose hy(u) ¢ as test function in (8.1), with ¢ in C1(2). We have,
since hf> =1, and h;* =0,

| A@Tu-viut o) = [ Frute+ [ pan

Since hi(u) tends to zero almost everyhwere, and is bounded, we have
li h =0
by Lebesgue theorem. For the same reason, we have
lim A(x)Vu -V hg(u) =0,
k——+o00 Q

so that
1

lim —/ A(x)Vu-pr—/@d)\*,
k—too b Jipcu<or Q

for every ¢ in C'(Q). The general result is obtained by a density
argument, since the sequence

1

is bounded in L'(Q) (just take hy(u) - 1 as test function in (8.1)). The
proof of (8.42) is analogous. O
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We can now prove that any renormalized solution is a duality solu-
tion. Let g be in L>(Q2), and let v be the solution of

—div(A*(x)Vv) =g in Q,
v=20 on Of).

By De Giorgi’s theorem (Theorem 3.4), v belongs to HE(Q) N C°(Q),
so that, if we define hy : R — R by

(0 if s < =2k,

st2k 9k < 5 < —F,

hi(s)=<¢ 1 if —k<s<k,

2k=s if | < 5 < 2k,

L 0 if s > 2k,

—2k —k 2k

k
we can choose hy(u) v as test function in (8.25) (since hy(s) has compact
support). We obtain

/QA(x)Vu Vo ha(u) + /

A(z)Vu - Vuhp(u)v = / I, (w)vdpg,
Q Q

since hlfoo = (0. The middle term can be rewritten as

/ A(z)Vu - Vuh(u)v
Q
= —l/ A(x)Vu - Vuv + 1 / A(x)Vu - Vuw.
k Jikcu<ory {(~2k<u<—k}
so that by (8.41) and (8.42) we have
lim | A(z)Vu-Vuhj(u)v = —/

vd\T —I—/vd)\_.
Q

Since hy, is bounded and converges to 1 everywhere, the boundedness
of v and Lebesgue theorem imply that

lim hi(w)vdpy = / v dpg.
For the first term, we can rewrite it as

/QA(Q:)Vu-Vvhk(u):/QA*(:U)VU~Vuhk(u):/A*(x)VvVHk(u),

Q
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where Hy(s) = [, hx(t)dt. Since hy has compact support, Hy(u) be-
longs to H} (), and so it can be chosen as test function in the equation
solved by v, which implies that

/QA*(x)vU-VHk(u):Lng(u).
Therefore,
/QA(:E)VU-Vvhk(u):/Qng(u).

Since Hy(u) tends to u almost everywhere (and is bounded in absolute
value by u, which is in L'(£2)), by Lebesgue theorem we have

lim [ A(z)Vu-Vouhg(u) = / gu.
Q

Putting the results together, we have

/gu—/vd)\++/vd)\:/vduo,
Q Q Q Q

which can be rewritten as

/gu:/vdu,
Q Q

so that u is the duality solution, as desired.
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