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where fλ(u) = λuq + ur, λ > 0, 0 < q < r ≤ N+α
N−α = 2∗α − 1 and

Ω ⊂ RN , with N > α, 0 < α < 2.

Subcritical case 1 < r < N+α
N−α , and q < 1

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, A concave-convex elliptic problem

involving the fractional Laplacian. To appear in Proc. Roy. Soc. Edinburgh.

Critical case r = N+α
N−α

[BCPS] B. Barrios, E.C., A. de Pablo, U. Sánchez, On Some critical problems for the

fractional Laplacian operator. Preprint 2011, arXiv:1106.6081.
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Let (λn, ϕn) be the eigenvalues and eigenfunctions of (−∆) in Ω with zero Dirichlet

boundary data. Then (λ
α/2
n , ϕn) are the eigenvalues and eigenfunctions of (−∆)α/2, also

with zero Dirichlet boundary conditions.

The fractional Laplacian (−∆)α/2 is well defined in the space

H
α/2
0 (Ω) =

{
u =

∑
anϕn ∈ L2(Ω) : ‖u‖2

H
α/2
0 (Ω)

=
∑

a2nλ
α/2
n < ∞

}
.

As a consequence,

(−∆)α/2u =
∑

λ
α/2
n anϕn.

Note that then ‖u‖
H

α/2
0 (Ω)

= ‖(−∆)α/4u‖L2(Ω).
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Definition of the Fractional Laplacian

We now consider the general problem

(P )





(−∆)α/2u = f(x, u) in Ω,

u = 0 on ∂Ω.

We say that u ∈ H
α/2
0 (Ω) is an energy solution of (P ) if the identity

∫

Ω
(−∆)α/4u(−∆)α/4ϕdx =

∫

Ω
f(x, u)ϕdx

holds for ∀ϕ ∈ H
α/2
0 (Ω).
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Definition of the Fractional Laplacian

(Pλ)





(−∆)α/2u = λuq + u
N+α
N−α , u > 0 in Ω,

u = 0 on ∂Ω,

where λ > 0, 0 < q < N+α
N−α

= 2∗α − 1 and Ω ⊂ RN , with N > α, 0 < α < 2.

By the definition of solution, if fλ(u) = λuq + u
N+α
N−α

∫

Ω
(−∆)α/4u(−∆)α/4ϕdx =

∫

Ω
fλ(u)ϕdx, ∀ϕ ∈ H

α/2
0 (Ω).

Since u ∈ H
α/2
0 (Ω) ⇒ f(u) ∈ L

2N
N+α (Ω) →֒ H−α/2(Ω).

Then fλ(u)ϕ ∈ L1(Ω).

Associated energy functional

I(u) =
1

2

∫

Ω

∣∣∣(−∆)α/4u
∣∣∣
2
dx−

λ

q + 1

∫

Ω
uq+1 dx−

1

2∗α

∫

Ω
u2

∗

αdx

which is well defined in Hα/2
0 (Ω). Clearly, the critical points of I correspond to solutions to

(Pλ).
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α-harmonic extension w = Eα(u) to the cylinder CΩ as the solution to the problem





−div(y1−α∇w) = 0 in CΩ,

w = 0 on ∂LCΩ = ∂Ω× (0,∞),

w = u on Ω× {y = 0}.

With that κα, the extension operator is an isometry

‖Eα(ψ)‖Xα
0 (CΩ) = ‖ψ‖

H
α/2
0 (Ω)

, ∀ψ ∈ H
α/2
0 (Ω).

Moreover, for any ϕ ∈ Xα
0 (CΩ), we have the following trace inequality

‖ϕ‖Xα
0 (CΩ) ≥ ‖ϕ(·, 0)‖

H
α/2
0 (Ω)

.
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Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the
original function u through the formula

−κα lim
y→0+

y1−α ∂w

∂y
(x, y) = (−∆)α/2u(x),

See:

[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.

See also:
[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc.
Edinburgh.

[CT] X. Cabré, J. Tan, Adv. Math., 2010.

[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential
Equations.
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Extended problems to one more variable
When Ω = RN , the above Dirichlet to Neumann procedure provides a formula to the
fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

((−∆)α/2)g)̂ (ξ) = |ξ|αĝ(ξ).

See
[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.



Extended problems to one more variable
When Ω = RN , the above Dirichlet to Neumann procedure provides a formula to the
fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

((−∆)α/2)g)̂ (ξ) = |ξ|αĝ(ξ).

See
[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.

In that case there are explicit expressions to the α-harmonic extension and the fractional
Laplacian in terms of the Poisson and Riesz kernels, resp.

w(x, y) = Pα
y ∗ u(x) = cN,αy

α

∫

RN

u(s)

(|x− s|2 + y2)
N+α

2

ds,

(−∆)α/2u(x) = dN,αP.V.

∫

RN

u(x)− u(s)

|x− s|N+α
ds.

α cN,ακα = dN,α
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we can reformulate (Pλ) with the new variable as
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∂να
= λwq + w
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N−α in Ω× {y = 0}.

w ∈ Xα
0 (CΩ) is an energy solution if

κα

∫

CΩ

y1−α〈∇w,∇ϕ〉 dxdy =

∫

Ω

(
λwq + w

N+α
N−α

)
ϕdx, ∀ ϕ ∈ Xα

0 (CΩ).

Energy functional:

J(w) =
κα

2

∫

CΩ

y1−α|∇w|2 dxdy −
λ

q + 1

∫

Ω
wq+1 dx−

1

2∗α

∫

Ω
w2∗α dx .

Note that critical points of J in Xα
0 (CΩ) correspond to critical points of I in Hα/2

0 (Ω). Even
more, minima of J also correspond to minima of I.
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Sobolev and Trace inequalities

Assume N > α, there exists a positive constant C = C(α, r,N,Ω) such that for
1 ≤ r ≤ 2∗α = 2N
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∫
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Sobolev and Trace inequalities

Assume N > α, there exists a positive constant C = C(α, r,N,Ω) such that for
1 ≤ r ≤ 2∗α = 2N

N−α
,

∫

CΩ

y1−α|∇z(x, y)|2 dxdy ≥ C

(∫

Ω
|z(x, 0)|r dx

)2/r

for any z ∈ Xα
0 (CΩ).

Also,
∫

Ω
|(−∆)α/4v|2 dx ≥ C

(∫

Ω
|v|r dx

)2/r

for any v ∈ H
α/2
0 (Ω).
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(∫
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, ∀ z ∈ Xα(RN+1

+ ).

The constant is achieved when z(·, 0) = u(·) takes the form:

u(x) = uε(x) =
ε(N−α)/2

(|x|2 + ε2)(N−α)/2
.

Also we have the corresponding Sobolev inequality

∫

RN
|(−∆)α/4v|2 dx ≥ καS(α,N)

(∫

RN
|v|2

∗

α dx

)2/2∗α

for any v ∈ H
α/2
0 (RN ).

Note that these constants are achived on R
N , but are not attained in any bounded

domain.
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3. has a solution for λ = Λ.

In the subcritical case [BCdPS] the same restriction on α appeared. The difficulty was to
find a Liouville-type theorem for 0 < α < 1. Here, due to the lack of regularity, it is not clear
how to separate the solutions in the appropriate way, see [CP,D] for more details.

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc.
Edinburgh.
[CP] E. C., I. Peral J. Funct. Anal. 2003.
[D] J. Dávila, J. Funct. Anal. 2001.
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(−∆)α/2u = λuq + u2
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u = 0 on ∂Ω,

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. There exists 0 < Λ < ∞ such that the problem (Pλ)

1. has no solution for λ > Λ;

2. has at least two solutions for each 0 < λ < Λ; (1 ≤ α < 2)
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Theorem 2 Let q = 1, 0 < α < 2 and N ≥ 2α. Then the problem (Pλ)

1. has no solution for λ ≥ λ1;

2. has a solution for each 0 < λ < λ1.

We have left open the range α < N < 2α. See the special case α = 2 and N = 3 in [BN] . If
α = 1 this range is empty, see [T] .

[BN] H. Brezis, L. Nirenberg, Comm. Pure Appl. Math. 1983.
[T] J. Tan, Calc. Var. Partial Differential Equations 2011.
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(−∆)α/2u = λuq + u2
∗−1, u > 0 in Ω,

u = 0 on ∂Ω,

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. There exists 0 < Λ < ∞ such that the problem (Pλ)

1. has no solution for λ > Λ;

2. has at least two solutions for each 0 < λ < Λ; (1 ≤ α < 2)

3. has a solution for λ = Λ.

Theorem 2 Let q = 1, 0 < α < 2 and N ≥ 2α. Then the problem (Pλ)

1. has no solution for λ ≥ λ1;

2. has a solution for each 0 < λ < λ1.

Theorem 3 Let 1 < q < 2∗α − 1, 0 < α < 2 and N > α(1 + (1/q)). Then the problem (Pλ)

has a solution for any λ > 0.
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Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).



Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

The proof follows by the Moser iterative method ([GT] ) with appropriate test functions.

[GT] D. Gilbarg, N.S. Trudinger, "Elliptic partial differential equations of second order"
Springer-Verlag, Berlin 2001.



Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

Proposition 2 Let u be a solution of (Pλ).

(i) If α = 1 and q ≥ 1 then u ∈ C∞(Ω).

(ii) If α = 1 and q < 1 then u ∈ C1,q(Ω).

(iii) If α < 1 then u ∈ C0,α(Ω).

(iv) If α > 1 then u ∈ C1,α−1(Ω).
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u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

Proposition 2 Let u be a solution of (Pλ).

(i) If α = 1 and q ≥ 1 then u ∈ C∞(Ω).

(ii) If α = 1 and q < 1 then u ∈ C1,q(Ω).

(iii) If α < 1 then u ∈ C0,α(Ω).

(iv) If α > 1 then u ∈ C1,α−1(Ω).

Proof: (i) By Proposition 1 and [CT] we get that u ∈ C0,γ(Ω), for some γ < 1. Since q ≥ 1

then fλ(u) ∈ C0,γ(Ω). Again by [CT] , it follows that u ∈ C1,γ(Ω). Iterating the process we
conclude that u ∈ C∞(Ω).

[CT] X. Cabré, J. Tan, Adv. Math. 2010.
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Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

Proposition 2 Let u be a solution of (Pλ).

(i) If α = 1 and q ≥ 1 then u ∈ C∞(Ω).

(ii) If α = 1 and q < 1 then u ∈ C1,q(Ω).

(iii) If α < 1 then u ∈ C0,α(Ω).

(iv) If α > 1 then u ∈ C1,α−1(Ω).

Proof: (ii) As before we have u ∈ C0,γ(Ω), for some γ < 1. Therefore fλ(u) ∈ C0,qγ(Ω). It
follows that u ∈ C1,qγ(Ω), which gives fλ(u) ∈ C0,q(Ω). Finally this implies u ∈ C1,q(Ω).
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Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

Proposition 2 Let u be a solution of (Pλ).

(i) If α = 1 and q ≥ 1 then u ∈ C∞(Ω).

(ii) If α = 1 and q < 1 then u ∈ C1,q(Ω).

(iii) If α < 1 then u ∈ C0,α(Ω).

(iv) If α > 1 then u ∈ C1,α−1(Ω).

Proof: (iii) By [CDDS] we obtain that u ∈ C0,γ(Ω) for all γ ∈ (0, α). This implies that
fλ(u) ∈ C0,r(Ω) for every r < min{qα, α}. Therefore, again by another result in [CDDS] ,
we get that u ∈ C0,α(Ω).

[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential
Equations, arXiv:1004.1906.
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Auxiliary results (regularity)
Proposition 1 Let u ∈ H

α/2
0 (Ω) be a solution to the problem




(−∆)α/2u = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

with 0 ≤ f(x, s) ≤ C(1 + |s|p) ∀ (x, s) ∈ Ω× R, and some 0 < p ≤ 2∗α − 1. Then
u ∈ L∞(Ω) with ‖u‖L∞(Ω) ≤ C(‖u‖

H
α/2
0 (Ω)

).

Proposition 2 Let u be a solution of (Pλ).

(i) If α = 1 and q ≥ 1 then u ∈ C∞(Ω).

(ii) If α = 1 and q < 1 then u ∈ C1,q(Ω).

(iii) If α < 1 then u ∈ C0,α(Ω).

(iv) If α > 1 then u ∈ C1,α−1(Ω).

Proof: (iv) Since α > 1, we can write problem (Pλ) as follows




(−∆)1/2u = s in Ω,

(−∆)(α−1)/2s = fλ(u) in Ω,

u = s = 0 on ∂Ω.

Reasoning as before, we obtain the desired regularity in two steps, using [CT] and [CDDS] .
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Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L] .

[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.



Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L] .

[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.

Proposition 3 Let {wn}n∈N be a weakly convergent sequence to w in Xα
0 (CΩ), such that

the sequence
{
y1−α|∇wn|2

}
n∈N

is tight. Let un = Tr(wn) and u = Tr(w). Assume that
µ, ν are two non negative measures such that

y1−α|∇wn|
2 → µ and |un|

2∗α → ν, as n→ ∞ (0.2)

in the sense of measures. Then there exist an at most countable set I, points {xk}k∈I ⊂ Ω

and real positive numbers µk, νk such that

1. µ ≥ y1−α|∇w|2 +
∑

k∈I

µkδxk ,

2. ν = |u|2
∗

α +
∑

k∈I

νkδxk ,

3. µk ≥ S(α,N)ν
2

2∗α
k .
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Main ideas/steps of the proofs

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. Then, there exists 0 < Λ <∞ such that Problem
(Pλ)

1. has no positive solution for λ > Λ;

2. has at least two positive solutions for each 0 < λ < Λ;

3. has a positive solution for λ = Λ.



Main ideas/steps of the proofs

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. Then, there exists 0 < Λ <∞ such that Problem
(Pλ)

1. has no positive solution for λ > Λ;

2. has at least two positive solutions for each 0 < λ < Λ;

3. has a positive solution for λ = Λ.

Proof of Theorem 1 1. Denoting (λ1, ϕ1) the first eigenvalue and an associated positive
eigenfunction to the classical Laplace operator, we have that

∫

Ω

(
λuq + u

N+α
N−α

)
ϕ1 dx = λ

α/2
1

∫

Ω
uϕ1 dx.

Observe that there exist positive constants c, δ such that λtq + t
N+α
N−α > cλδt, for any t > 0,

hence by the previous integral identity, cλδ < λ
α/2
1 ⇒ Λ <∞.



Main ideas/steps of the proofs

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. Then, there exists 0 < Λ <∞ such that Problem
(Pλ)

1. has no positive solution for λ > Λ;

2. has at least two positive solutions for each 0 < λ < Λ;

3. has a positive solution for λ = Λ.

Proof of Theorem 1 To prove Λ > 0, for λ > 0 sufficiently small, one can use the iteration
method of sub-supersolutions, starting with the subsolution and obtaining a minimal one.

See for example, the pioneering works [GP,ABC] for the p-Laplacian, Laplacian resp. among
others...

Moreover, it is easy to see that we have an interval of minimal solutions increasing with
respect to λ for any 0 < λ < Λ.

[GP] J. García-Azorero, I. Peral Trans. Amer. Math. Soc. 1991.

[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Func. Analysis 1994.



Main ideas/steps of the proofs

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. Then, there exists 0 < Λ <∞ such that Problem
(Pλ)

1. has no positive solution for λ > Λ;

2. has at least two positive solutions for each 0 < λ < Λ;

3. has a positive solution for λ = Λ.

Proof of Theorem 1 3. The idea consist (like in [ABC] ) on passing to the limit as λր Λ on
the sequence of minimal solutions wn = wλn . Clearly Jλn (wn) < 0, hence

0 > Jλn (wn)−
1

2∗α
〈J ′

λn
(wn), wn〉 = κα

(
1

2
−

1

2∗α

)
‖wn‖

2
Xα

0 (CΩ)−λn

(
1

q + 1
−

1

2∗α

)∫

Ω
wq+1

n dx.

By the Sobolev and Trace inequalities, the sequence is bounded, ‖wn‖Xα
0

≤ C. Then there
exist a subsequence wn ⇀ wΛ ∈ Xα

0 (CΩ). Moreover, by comparison wΛ ≥ wλ > 0 for any
0 < λ < Λ. A non trivial solution to (PΛ).



Main ideas/steps of the proofs

Theorem 1 Let 0 < q < 1, 1 ≤ α < 2. Then, there exists 0 < Λ <∞ such that Problem
(Pλ)

1. has no positive solution for λ > Λ;

2. has at least two positive solutions for each 0 < λ < Λ;

3. has a positive solution for λ = Λ.

Proof of Theorem 1 2. Ideas/Steps:
(i) The minimal solution is a local minimum for the functional.
(ii) So we can use the Mountain Pass Theorem, obtaining a minimax sequence.
(iii) In order to find a second solution, we need to prove a Palais-Smale (PS) condition under
a critical level.
(iv) Arguing by contradiction, if the local minimum would be the unique critical point, then the
functional satisfies a local (PS)c condition for c under a critical level. To do that we construct
a path by localizing the minimizers of the Trace/Sobolev inequalities at the possible Dirac
Deltas given by the concentration-compactness result.
Here appear new difficulties:
1.- It is not known how the fractional Laplacian acts on products of functions.
2.- By that, we work on the extended functional, but the minimizers have not an explicit
expression on R

N+1
+ .

3.- Also we need to prove that there is neither vanishing, nor dichotomy, since we pass to the
infinite cylinder in the y-variable.
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Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local
minimum in the C1-topology. To start with we prove a separation lemma in that topology.



Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local
minimum in the C1-topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let 0 < µ1 < λ0 < µ2 < Λ. Let zµ1 , zλ0
and zµ2 be the corresponding minimal

solutions to (Pλ), λ = µ1, λ0 and µ2 respectively. If X = {z ∈ C1
0(Ω)| zµ1 ≤ z ≤ zµ2}, then

there exists ε > 0 such that

{zλ0
}+ εB1 ⊂ X ,

where B1 is the unit ball in C1
0(Ω).



Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local
minimum in the C1-topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let 0 < µ1 < λ0 < µ2 < Λ. Let zµ1 , zλ0
and zµ2 be the corresponding minimal

solutions to (Pλ), λ = µ1, λ0 and µ2 respectively. If X = {z ∈ C1
0(Ω)| zµ1 ≤ z ≤ zµ2}, then

there exists ε > 0 such that

{zλ0
}+ εB1 ⊂ X ,

where B1 is the unit ball in C1
0(Ω).

Proof. Since α ≥ 1, by Proposition 2, ∃ 0 < γ < 1 such that any solution to (Pλ) is in C1,γ

for any 0 < λ < Λ. Then

u(x) ≤ C dist (x, ∂Ω), ∀ x ∈ Ω.

By comparison with a positive first eigenfunction of the Laplacian, we get

u(x) ≥ c dist (x, ∂Ω), ∀ x ∈ Ω. �
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Main ideas/steps of the proofs

Lemma 2 For all λ ∈ (0,Λ) there exists a solution for (Pλ) which is a local minimum of the
functional I in the C1-topology.



Main ideas/steps of the proofs

Lemma 2 For all λ ∈ (0,Λ) there exists a solution for (Pλ) which is a local minimum of the
functional I in the C1-topology.

Proof. Given 0 < µ1 < λ < µ2 < Λ, let zµ1 and zµ2 be the minimal solutions of (Pµ1 ) and
(Pµ2 ) respectively, we set

f∗(x, s) =





fλ(zµ1 (x)) if s ≤ zµ1 ,

fλ(s) if zµ1 ≤ s ≤ zµ2 ,

fλ(zµ2 (x)) if zµ2 ≤ s,

F ∗(x, z) =

∫ z

0
f∗(x, s) ds

and

I∗(z) =
1

2
‖z‖

H
α/2
0 (Ω)

−

∫

Ω
F ∗(x, u)dx.

This functional achieves its global minimum.
By comparison with our functional in X and Lemma 1 we get a minimum in C1

0(Ω).
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Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let z0 ∈ H
α/2
0 (Ω) be a local minimum of I in C1

0(Ω), i.e., there exists r > 0

such that

I(z0) ≤ I(z0 + z) ∀z ∈ C1
0(Ω) with ‖z‖C1

0(Ω) ≤ r. (0.3)

Then z0 is a local minimum of I in Hα/2
0 (Ω), that is, there exists ε0 > 0 such that

I(z0) ≤ I(z0 + z) ∀z ∈ H
α/2
0 (Ω) with ‖z‖

H
α/2
0 (Ω)

≤ ε0.
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We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let z0 ∈ H
α/2
0 (Ω) be a local minimum of I in C1

0(Ω), i.e., there exists r > 0

such that

I(z0) ≤ I(z0 + z) ∀z ∈ C1
0(Ω) with ‖z‖C1

0(Ω) ≤ r. (0.4)

Then z0 is a local minimum of I in Hα/2
0 (Ω), that is, there exists ε0 > 0 such that

I(z0) ≤ I(z0 + z) ∀z ∈ H
α/2
0 (Ω) with ‖z‖

H
α/2
0 (Ω)

≤ ε0.

[BN2] H. Brezis, L. Nirenberg H1 versus C1 local minimizers CRAS 1993.
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We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let z0 ∈ H
α/2
0 (Ω) be a local minimum of I in C1

0(Ω), i.e., there exists r > 0

such that

I(z0) ≤ I(z0 + z) ∀z ∈ C1
0(Ω) with ‖z‖C1

0(Ω) ≤ r. (0.5)

Then z0 is a local minimum of I in Hα/2
0 (Ω), that is, there exists ε0 > 0 such that

I(z0) ≤ I(z0 + z) ∀z ∈ H
α/2
0 (Ω) with ‖z‖

H
α/2
0 (Ω)

≤ ε0.

We make a translation in the nonlinearity of the functional in order to get that minimum at the
origin.

Lemma 3 (i) The translated functional has a local minimum at the origin in Hα/2
0 (Ω).

Moreover, (ii) the extended functional has a local minimum at the origin in Xα
0 (CΩ).



Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let z0 ∈ H
α/2
0 (Ω) be a local minimum of I in C1

0(Ω), i.e., there exists r > 0

such that

I(z0) ≤ I(z0 + z) ∀z ∈ C1
0(Ω) with ‖z‖C1

0(Ω) ≤ r. (0.6)

Then z0 is a local minimum of I in Hα/2
0 (Ω), that is, there exists ε0 > 0 such that

I(z0) ≤ I(z0 + z) ∀z ∈ H
α/2
0 (Ω) with ‖z‖

H
α/2
0 (Ω)

≤ ε0.

We make a translation in the nonlinearity of the functional in order to get that minimum at the
origin.

Lemma 3 (i) The translated functional has a local minimum at the origin in Hα/2
0 (Ω).

Moreover, (ii) the extended functional has a local minimum at the origin in Xα
0 (CΩ).

The part (i) follows by simple computations as in the classical case, [ABC] . The second part

(ii) follows by using the isometry between Hα/2
0 (Ω) and Xα

0 (CΩ), and the fact that the
α-harmonic extension minimize the norm in Xα

0 (CΩ).

[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Funct. Analysis 1994.
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Main ideas/steps of the proofs

Lemma 4 If v = 0 is the only critical point of J̃ in Xα
0 (CΩ) then J̃ satisfies a local (PS)c

condition for any c < c∗.
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Main ideas/steps of the proofs

Lemma 4 If v = 0 is the only critical point of J̃ in Xα
0 (CΩ) then J̃ satisfies a local (PS)c

condition for any c < c∗.

In order to prove it, first we show that the (PS)c sequence of the previous lemma is tight.

Lemma 5 For any η > 0 there exists ρ0 > 0 such that

∫

{y>ρ0}

∫

Ω
y1−α|∇zn|

2dxdy < η, ∀n ∈ N.
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Main ideas/steps of the proofs

Lemma 4 If v = 0 is the only critical point of J̃ in Xα
0 (CΩ) then J̃ satisfies a local (PS)c

condition for any c < c∗.

Proof of Lemma 4. Let {wn} be a (PS)c: J̃(wn) → c < c∗, J̃ ′(wn) → 0. By Lemma 5
and Proposition 3 (concentration-compactness), there exists an index set I (at most
countable) and a sequence of points {xk} ⊂ Ω, k ∈ I and real positive numbers µk, νk such
that (up to a subsequence)

y1−α|∇wn|
2 → µ ≥ y1−α|∇w0|

2 +
∑

k∈I

µkδxk

and

|wn(·, 0)|
2∗α → ν = |w0(·, 0)|

2∗α +
∑

k∈I

νkδxk

in the sense of measures, and moreover, µk ≥ S(α,N)ν
2

2∗α
k , for every k ∈ I.
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Main ideas/steps of the proofs

Lemma 4 If v = 0 is the only critical point of J̃ in Xα
0 (CΩ) then J̃ satisfies a local (PS)c

condition for any c < c∗.

Proof of Lemma 4. Let φ be a regular non-increasing cut-off function, φ = 1 in B1, φ = 0 in
Bc

2. Then φε(x, y) = φ(x/ε, y/ε), it is clear that |∇φε| ≤ C
ε

. We denote

Γ2ε = B+
2ε(xk0

) ∩ {y = 0}.
Clearly,

κα lim
n→∞

∫

CΩ

y1−α〈∇wn,∇φε〉wndxdy

= lim
n→∞

(∫

Γ2ε

|wn|
2∗αφε dx+ λ

∫

Γ2ε

|wn|
q+1φε dx− κα

∫

B+
2ε(xk0

)
y1−α|∇wn|

2φε dxdy

)
.

Passing to the limit we obtain

lim
ε→0

[∫

Γ2ε

φε dν + λ

∫

Γ2ε

|w0|
q+1φε dx− κα

∫

B+
2ε(xk0

)
φε dµ

]
= νk0

− καµk0
.

Since µk ≥ S(α,N)ν
2
2∗α
k , we get that

νk = 0 or νk ≥ (καS(α,N))
N
α , ∀k ∈ I.
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Lemma 4 If v = 0 is the only critical point of J̃ in Xα
0 (CΩ) then J̃ satisfies a local (PS)c

condition for any c < c∗.

Proof of Lemma 4. Suppose that νk0
6= 0 for some k0 ∈ I. Then

c = lim
n→∞

J(wn)−
1

2
〈J ′(wn), wn〉

≥
α

2N

∫

Ω
w

2∗α
0 dx+

α

2N
νk0

+ λ

(
1

2
−

1

q + 1

)∫

Ω
wq+1

0 dx

≥
α

2N
(καS(α,N))N/α = c∗,

a contradiction. Therefore νk = 0 ∀ k ∈ I, so un → u0 strongly in L2∗α (Ω) and we conclude
easily. �
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Main ideas/steps of the proofs

Now the idea is the following. One consider the minimizers to the Sobolev inequality

uε(x) =
ε(N−α)/2

(|x|2+ε2)(N−α)/2 and its α-harmonic extension wε, not explicit. Consider an

appropriate cut-off function φ in CΩ centered at the origin (we can assume 0 ∈ Ω), and
denote ψε = φwε

‖φwε‖
. Define

Γε = {γ ∈ C([0, 1], Xα
0 (CΩ)) : γ(0) = 0, γ(1) = tεψε}

for some tε > 0 such that J̃(tεψε) < 0. And consider the minimax value

cε = inf
γ∈Γε

max J̃(γ(t)) : 0 ≤ t ≤ 1.

Then we are going to prove that for ε≪ 1,

cε ≤ sup
t≥0

J̃(tψε) < c∗ =
α

2N
(καS(α,N))N/α .

By the Mountain Pass Theorem, there exists a (PS) sequence {wn} ⊂ Xα
0 (CΩ) verifying

J̃(wn) → cε < c∗, J̃ ′(wn) → 0.

So by Lemma 4 we finish.



Main ideas/steps of the proofs

Lemma 6 With the above notation, taking ε ≪ 1,

‖φwε‖
2
Xα

0 (CΩ) = ‖wε‖
2
Xα

0 (CΩ) +O(εN−α),

‖φuε‖
2
L2(Ω)

=





cεα +O(εN−α) if N > 2α,

cεαlog(1/ε) +O(εα) if N = 2α,

and if r = N+α
N−α

= 2∗α − 1,

‖φuε‖
r
Lr(Ω) ≥ cε

N−α
2 , α < N < 2α.
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Lemma 6 With the above notation, taking ε ≪ 1,

‖φwε‖
2
Xα

0 (CΩ) = ‖wε‖
2
Xα

0 (CΩ) +O(εN−α),

‖φuε‖
2
L2(Ω)

=





cεα +O(εN−α) if N > 2α,

cεαlog(1/ε) +O(εα) if N = 2α,

and if r = N+α
N−α

= 2∗α − 1,

‖φuε‖
r
Lr(Ω) ≥ cε

N−α
2 , α < N < 2α.

Taking into account that the family uε and the Poisson kernel are self-similar

uε(x) = ε
α−N

2 u1(x/ε), Pα
y (x) = 1

yN Pα
1

(
x
y

)
, this gives that the family wε is also

self-similar, more precisely

wε(x, y) = ε
α−N

2 w1

(x
ε
,
y

ε

)
.

We will denote w1,α = w1.
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Lemma 6 With the above notation, taking ε ≪ 1,

‖φwε‖
2
Xα

0 (CΩ) = ‖wε‖
2
Xα

0 (CΩ) +O(εN−α),

‖φuε‖
2
L2(Ω)

=





cεα +O(εN−α) if N > 2α,

cεαlog(1/ε) +O(εα) if N = 2α,

and if r = N+α
N−α

= 2∗α − 1,

‖φuε‖
r
Lr(Ω) ≥ cε

N−α
2 , α < N < 2α.

Lemma 7 wε(x, y) = ε
α−N

2 w1

(
x
ε
, y
ε

)
; w1,α = w1.

|∇w1,α(x, y)| ≤
c

y
w1,α(x, y), α > 0, (x, y) ∈ R

N+1
+

|∇w1,α(x, y)| ≤ cw1,α−1(x, y), α > 1, (x, y) ∈ R
N+1
+ .

|w1,α(x, y)| ≤ CεN−α,
1

2ε
≤ |(x, y)| ≤

1

ε
.
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Lemma 6 With the above notation, taking ε ≪ 1,

‖φwε‖
2
Xα

0 (CΩ) = ‖wε‖
2
Xα

0 (CΩ) +O(εN−α),

‖φuε‖
2
L2(Ω)

=





cεα +O(εN−α) if N > 2α,

cεαlog(1/ε) +O(εα) if N = 2α,

and if r = N+α
N−α

= 2∗α − 1,

‖φuε‖
r
Lr(Ω) ≥ cε

N−α
2 , α < N < 2α.

Lemma 8 For ε≪ 1,

sup
t>0

J̃(tψε) < c∗.



Main ideas/steps of the proofs

Lemma 6 With the above notation, taking ε ≪ 1,

‖φwε‖
2
Xα

0 (CΩ) = ‖wε‖
2
Xα

0 (CΩ) +O(εN−α),

‖φuε‖
2
L2(Ω)

=





cεα +O(εN−α) if N > 2α,

cεαlog(1/ε) +O(εα) if N = 2α,

and if r = N+α
N−α

= 2∗α − 1,

‖φuε‖
r
Lr(Ω) ≥ cε

N−α
2 , α < N < 2α.

Lemma 8 For ε≪ 1,

sup
t>0

J̃(tψε) < c∗.

For example for N > 2α, after some computations,

sup
t>0

J̃(tψε) ≤ c∗ − c εα +O(εN−α) < c∗. �
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