A non-local critical problem involving the fractional Laplacian operator

Eduardo Colorado

Universidad Carlos III de Madrid

UGR, Granada Febrero 2012

The main results of the talk are in collaboration with:

- **B.** Barrios, UAM-ICMAT.
- A. de Pablo, UC3M.
- U. Sánchez, UC3M.

B. Barrios, E. C., A. de Pablo, U. Sánchez, On Some critical problems for the fractional Laplacian operator. Preprint 2011, arXiv:1106.6081.

The main problem

$$(P_{\lambda}) \quad \begin{cases} (-\Delta)^{\alpha/2}u = f_{\lambda}(u), \quad u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

The main problem

$$(P_{\lambda}) \quad \begin{cases} (-\Delta)^{\alpha/2}u = f_{\lambda}(u), & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where $f_{\lambda}(u) = \lambda u^q + u^r$, $\lambda > 0$, $0 < q < r \le \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$ and $\Omega \subset \mathbb{R}^N$, with $N > \alpha$, $0 < \alpha < 2$.

The main problem

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = f_{\lambda}(u), & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where $f_{\lambda}(u) = \lambda u^q + u^r$, $\lambda > 0$, $0 < q < r \le \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$ and $\Omega \subset \mathbb{R}^N$, with $N > \alpha$, $0 < \alpha < 2$.

Subcritical case
$$1 < r < \frac{N+\alpha}{N-\alpha}$$
, and $q < 1$

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. To appear in Proc. Roy. Soc. Edinburgh.

Critical case
$$r = \frac{N+\alpha}{N-\alpha}$$

[BCPS] B. Barrios, E.C., A. de Pablo, U. Sánchez, On Some critical problems for the fractional Laplacian operator. Preprint 2011, arXiv:1106.6081.

Definition of the Fractional Laplacian (through the spectral decomposition)

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities
- Main results

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities
- Main results
- Some ideas of the proofs

Powers of Laplacian operator $(-\Delta)$:

Let (λ_n, φ_n) be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $(\lambda_n^{\alpha/2}, \varphi_n)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha/2}$, also with zero Dirichlet boundary conditions.

Powers of Laplacian operator $(-\Delta)$:

Let (λ_n, φ_n) be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $(\lambda_n^{\alpha/2}, \varphi_n)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha/2}$, also with zero Dirichlet boundary conditions.

The fractional Laplacian $(-\Delta)^{\alpha/2}$ is well defined in the space

$$H_0^{\alpha/2}(\Omega) = \left\{ u = \sum a_n \varphi_n \in L^2(\Omega) : \|u\|_{H_0^{\alpha/2}(\Omega)}^2 = \sum a_n^2 \lambda_n^{\alpha/2} < \infty \right\}.$$

Powers of Laplacian operator $(-\Delta)$:

Let (λ_n, φ_n) be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $(\lambda_n^{\alpha/2}, \varphi_n)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha/2}$, also with zero Dirichlet boundary conditions.

The fractional Laplacian $(-\Delta)^{\alpha/2}$ is well defined in the space

$$H_0^{\alpha/2}(\Omega) = \left\{ u = \sum a_n \varphi_n \in L^2(\Omega) : \|u\|_{H_0^{\alpha/2}(\Omega)}^2 = \sum a_n^2 \lambda_n^{\alpha/2} < \infty \right\}.$$

As a consequence,

$$(-\Delta)^{\alpha/2}u = \sum \lambda_n^{\alpha/2} a_n \varphi_n.$$

Note that then $||u||_{H_0^{\alpha/2}(\Omega)} = ||(-\Delta)^{\alpha/4}u||_{L^2(\Omega)}.$

We now consider the general problem

$$(P) \begin{cases} (-\Delta)^{\alpha/2}u = f(x, u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega. \end{cases}$$

We now consider the general problem

$$(P) \begin{cases} (-\Delta)^{\alpha/2}u = f(x, u) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega. \end{cases}$$

We say that $u \in H_0^{\alpha/2}(\Omega)$ is an energy solution of (P) if the identity

$$\int_{\Omega} (-\Delta)^{\alpha/4} u (-\Delta)^{\alpha/4} \varphi \, dx = \int_{\Omega} f(x, u) \varphi \, dx$$

holds for $\forall \varphi \in H_0^{\alpha/2}(\Omega)$.

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{\frac{N+\alpha}{N-\alpha}}, & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

where $\lambda > 0$, $0 < q < \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$ and $\Omega \subset \mathbb{R}^N$, with $N > \alpha$, $0 < \alpha < 2$.

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{\frac{N+\alpha}{N-\alpha}}, & u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\lambda > 0, 0 < q < \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$ and $\Omega \subset \mathbb{R}^N$, with $N > \alpha, 0 < \alpha < 2$.

By the definition of solution, if $f_{\lambda}(u) = \lambda u^q + u^{\frac{N+\alpha}{N-\alpha}}$

$$\int_{\Omega} (-\Delta)^{\alpha/4} u (-\Delta)^{\alpha/4} \varphi \, dx = \int_{\Omega} f_{\lambda}(u) \varphi \, dx, \quad \forall \varphi \in H_0^{\alpha/2}(\Omega).$$

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{\frac{N+\alpha}{N-\alpha}}, & u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $\lambda > 0, 0 < q < \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$ and $\Omega \subset \mathbb{R}^N$, with $N > \alpha, 0 < \alpha < 2$.

By the definition of solution, if $f_{\lambda}(u) = \lambda u^q + u^{\frac{N+\alpha}{N-\alpha}}$

$$\int_{\Omega} (-\Delta)^{\alpha/4} u (-\Delta)^{\alpha/4} \varphi \, dx = \int_{\Omega} f_{\lambda}(u) \varphi \, dx, \quad \forall \varphi \in H_0^{\alpha/2}(\Omega).$$

Since $u \in H_0^{\alpha/2}(\Omega) \Rightarrow f(u) \in L^{\frac{2N}{N+\alpha}}(\Omega) \hookrightarrow H^{-\alpha/2}(\Omega)$. Then $f_{\lambda}(u)\varphi \in L^1(\Omega)$.

Associated energy functional

$$I(u) = \frac{1}{2} \int_{\Omega} \left| (-\Delta)^{\alpha/4} u \right|^2 \, dx - \frac{\lambda}{q+1} \int_{\Omega} u^{q+1} \, dx - \frac{1}{2_{\alpha}^*} \int_{\Omega} u^{2_{\alpha}^*} \, dx$$

which is well defined in $H_0^{\alpha/2}(\Omega)$. Clearly, the critical points of *I* correspond to solutions to (P_{λ}) .

Consider the cylinder $C_{\Omega} = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H_0^{\alpha/2}(\Omega)$, we define its α -harmonic extension $w = E_{\alpha}(u)$ to the cylinder C_{Ω} as the solution to the problem

$$\begin{cases} -\operatorname{div}(y^{1-\alpha}\nabla w) = 0 & \text{ in } \mathcal{C}_{\Omega}, \\ w = 0 & \text{ on } \partial_{L}\mathcal{C}_{\Omega} = \partial\Omega \times (0, \infty), \\ w = u & \text{ on } \Omega \times \{y = 0\}. \end{cases}$$

Consider the cylinder $C_{\Omega} = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H_0^{\alpha/2}(\Omega)$, we define its α -harmonic extension $w = E_{\alpha}(u)$ to the cylinder C_{Ω} as the solution to the problem

The extension function belongs to the space $X_0^{\alpha}(\mathcal{C}_{\Omega})$ defined as the completion of $\{z \in \mathcal{C}^{\infty}(\mathcal{C}_{\Omega}) : z = 0 \text{ on } \partial_L \mathcal{C}_{\Omega}\}$ with the norm

$$||z||_{X_0^{\alpha}(\mathcal{C}_{\Omega})} = \left(\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} |\nabla z|^2 dx dy\right)^{1/2}$$

where κ_{α} is a normalization constant.

Consider the cylinder $C_{\Omega} = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H_0^{\alpha/2}(\Omega)$, we define its α -harmonic extension $w = E_{\alpha}(u)$ to the cylinder C_{Ω} as the solution to the problem

$$\begin{cases} -\operatorname{div}(y^{1-\alpha}\nabla w) = 0 & \text{ in } \mathcal{C}_{\Omega}, \\ w = 0 & \text{ on } \partial_L \mathcal{C}_{\Omega} = \partial \Omega \times (0, \infty), \\ w = u & \text{ on } \Omega \times \{y = 0\}. \end{cases}$$

With that κ_{α} , the extension operator is an isometry

$$\| \operatorname{E}_{\alpha}(\psi) \|_{X_{0}^{\alpha}(\mathcal{C}_{\Omega})} = \| \psi \|_{H_{0}^{\alpha/2}(\Omega)}, \quad \forall \psi \in H_{0}^{\alpha/2}(\Omega).$$

Consider the cylinder $C_{\Omega} = \Omega \times (0, \infty) \subset \mathbb{R}^{N+1}_+$. Given $u \in H_0^{\alpha/2}(\Omega)$, we define its α -harmonic extension $w = \mathbf{E}_{\alpha}(u)$ to the cylinder C_{Ω} as the solution to the problem

$$\begin{array}{ll} -\operatorname{div}(y^{1-\alpha}\nabla w) = 0 & \quad \text{in } \mathcal{C}_{\Omega}, \\ w = 0 & \quad \text{on } \partial_L \mathcal{C}_{\Omega} = \partial \Omega \times (0, \infty), \\ w = u & \quad \text{on } \Omega \times \{y = 0\}. \end{array}$$

With that κ_{α} , the extension operator is an isometry

$$\| \operatorname{E}_{\alpha}(\psi) \|_{X_{0}^{\alpha}(\mathcal{C}_{\Omega})} = \| \psi \|_{H_{0}^{\alpha/2}(\Omega)}, \quad \forall \psi \in H_{0}^{\alpha/2}(\Omega).$$

Moreover, for any $\varphi \in X_0^{\alpha}(\mathcal{C}_{\Omega})$, we have the following trace inequality

$$\|\varphi\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})} \ge \|\varphi(\cdot,0)\|_{H_0^{\alpha/2}(\Omega)}.$$

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$-\kappa_{\alpha} \lim_{y \to 0^+} y^{1-\alpha} \frac{\partial w}{\partial y}(x,y) = (-\Delta)^{\alpha/2} u(x),$$

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$-\kappa_{\alpha} \lim_{y \to 0^+} y^{1-\alpha} \frac{\partial w}{\partial y}(x,y) = (-\Delta)^{\alpha/2} u(x),$$

See:

[CS] L. Caffarelli, L. Silvestre, *An extension problem related to the fractional Laplacian.* Comm. Partial Differential Equations, 2007.

See also:

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc. Edinburgh.

[CT] X. Cabré, J. Tan, Adv. Math., 2010.

[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential Equations.

When $\Omega = \mathbb{R}^N$, the above Dirichlet to Neumann procedure provides a formula to the fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

 $((-\Delta)^{\alpha/2})g)(\xi) = |\xi|^{\alpha}\hat{g}(\xi).$

See

[CS] L. Caffarelli, L. Silvestre, *An extension problem related to the fractional Laplacian.* Comm. Partial Differential Equations, 2007.

When $\Omega = \mathbb{R}^N$, the above Dirichlet to Neumann procedure provides a formula to the fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

 $((-\Delta)^{\alpha/2})g)(\xi) = |\xi|^{\alpha}\hat{g}(\xi).$

See

[CS] L. Caffarelli, L. Silvestre, *An extension problem related to the fractional Laplacian.* Comm. Partial Differential Equations, 2007.

In that case there are explicit expressions to the α -harmonic extension and the fractional Laplacian in terms of the Poisson and Riesz kernels, resp.

$$w(x,y) = P_y^{\alpha} * u(x) = c_{N,\alpha} y^{\alpha} \int_{\mathbb{R}^N} \frac{u(s)}{(|x-s|^2 + y^2)^{\frac{N+\alpha}{2}}} \, ds,$$
$$(-\Delta)^{\alpha/2} u(x) = d_{N,\alpha} P.V. \int_{\mathbb{R}^N} \frac{u(x) - u(s)}{|x-s|^{N+\alpha}} \, ds.$$

 $\alpha c_{N,\alpha} \kappa_{\alpha} = d_{N,\alpha}$

Denoting

$$L_{\alpha}w := -\operatorname{div}(y^{1-\alpha}\nabla w), \qquad \frac{\partial w}{\partial \nu^{\alpha}} := -\kappa_{\alpha} \lim_{y \to 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}$$

we can reformulate $({\cal P}_{\lambda})$ with the new variable as

$$(\overline{P}_{\lambda}) \begin{cases} L_{\alpha}w = 0 & \text{in } \mathcal{C}_{\Omega} \\ w = 0 & \text{on } \partial_{L}\mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial\nu^{\alpha}} = \lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} & \text{in } \Omega \times \{y = 0\}. \end{cases}$$

Denoting

$$L_{\alpha}w := -\operatorname{div}(y^{1-\alpha}\nabla w), \qquad \frac{\partial w}{\partial \nu^{\alpha}} := -\kappa_{\alpha} \lim_{y \to 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}$$

we can reformulate (P_{λ}) with the new variable as

$$(\overline{P}_{\lambda}) \begin{cases} L_{\alpha}w = 0 & \text{in } \mathcal{C}_{\Omega} \\ w = 0 & \text{on } \partial_{L}\mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial\nu^{\alpha}} = \lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} & \text{in } \Omega \times \{y = 0\}. \end{cases}$$

 $w\in X^{lpha}_0(\mathcal{C}_\Omega)$ is an energy solution if

$$\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} \langle \nabla w, \nabla \varphi \rangle \, dx dy = \int_{\Omega} \left(\lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} \right) \varphi \, dx, \qquad \forall \, \varphi \in X_{0}^{\alpha}(\mathcal{C}_{\Omega}).$$

Denoting

$$L_{\alpha}w := -\operatorname{div}(y^{1-\alpha}\nabla w), \qquad \frac{\partial w}{\partial \nu^{\alpha}} := -\kappa_{\alpha} \lim_{y \to 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}$$

we can reformulate (P_{λ}) with the new variable as

$$(\overline{P}_{\lambda}) \begin{cases} L_{\alpha}w = 0 & \text{in } \mathcal{C}_{\Omega} \\ w = 0 & \text{on } \partial_{L}\mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial\nu^{\alpha}} = \lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} & \text{in } \Omega \times \{y = 0\}. \end{cases}$$

 $w \in X^{lpha}_0(\mathcal{C}_\Omega)$ is an energy solution if

$$\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} \langle \nabla w, \nabla \varphi \rangle \, dx dy = \int_{\Omega} \left(\lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} \right) \varphi \, dx, \qquad \forall \, \varphi \in X_{0}^{\alpha}(\mathcal{C}_{\Omega}).$$

Energy functional:

$$J(w) = \frac{\kappa_{\alpha}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} |\nabla w|^2 \, dx \, dy - \frac{\lambda}{q+1} \int_{\Omega} w^{q+1} \, dx - \frac{1}{2^*_{\alpha}} \int_{\Omega} w^{2^*_{\alpha}} \, dx \, .$$

Denoting

$$L_{\alpha}w := -\operatorname{div}(y^{1-\alpha}\nabla w), \qquad \frac{\partial w}{\partial \nu^{\alpha}} := -\kappa_{\alpha} \lim_{y \to 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}$$

we can reformulate (P_{λ}) with the new variable as

$$(\overline{P}_{\lambda}) \begin{cases} L_{\alpha}w = 0 & \text{in } \mathcal{C}_{\Omega} \\ w = 0 & \text{on } \partial_{L}\mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial\nu^{\alpha}} = \lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} & \text{in } \Omega \times \{y = 0\}. \end{cases}$$

 $w\in X^{lpha}_0(\mathcal{C}_\Omega)$ is an energy solution if

$$\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} \langle \nabla w, \nabla \varphi \rangle \, dx dy = \int_{\Omega} \left(\lambda w^{q} + w^{\frac{N+\alpha}{N-\alpha}} \right) \varphi \, dx, \qquad \forall \, \varphi \in X_{0}^{\alpha}(\mathcal{C}_{\Omega}).$$

Energy functional:

$$J(w) = \frac{\kappa_{\alpha}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} |\nabla w|^2 \, dx \, dy - \frac{\lambda}{q+1} \int_{\Omega} w^{q+1} \, dx - \frac{1}{2^*_{\alpha}} \int_{\Omega} w^{2^*_{\alpha}} \, dx \, .$$

Note that critical points of *J* in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ correspond to critical points of *I* in $H_0^{\alpha/2}(\Omega)$. Even more, minima of *J* also correspond to minima of *I*.

Assume $N > \alpha$, there exists a positive constant $C = C(\alpha, r, N, \Omega)$ such that for $1 \le r \le 2^*_{\alpha} = \frac{2N}{N-\alpha}$,

$$\int_{\mathcal{C}_{\Omega}} y^{1-\alpha} |\nabla z(x,y)|^2 \, dx \, dy \ge C \left(\int_{\Omega} |z(x,0)|^r \, dx \right)^{2/r}$$

for any $z \in X_0^{\alpha}(\mathcal{C}_{\Omega})$.

Assume $N > \alpha$, there exists a positive constant $C = C(\alpha, r, N, \Omega)$ such that for $1 \le r \le 2^*_{\alpha} = \frac{2N}{N-\alpha}$,

$$\int_{\mathcal{C}_{\Omega}} y^{1-\alpha} |\nabla z(x,y)|^2 \, dx dy \ge C \left(\int_{\Omega} |z(x,0)|^r \, dx \right)^{2/r}$$

for any $z \in X_0^{\alpha}(\mathcal{C}_{\Omega})$.

Also,

$$\int_{\Omega} |(-\Delta)^{\alpha/4} v|^2 \, dx \ge C \left(\int_{\Omega} |v|^r \, dx \right)^{2/r}$$

for any $v \in H_0^{\alpha/2}(\Omega)$.

When $\Omega = \mathbb{R}^N$, $r = 2^*_{\alpha}$, there exists a constant $S(\alpha, N) > 0$ such that

$$\int_{\mathbb{R}^{N+1}_{+}} y^{1-\alpha} |\nabla z(x,y)|^2 \, dx \, dy \ge S(\alpha,N) \left(\int_{\mathbb{R}^N} |z(x,0)|^{2^*_{\alpha}} \, dx \right)^{2/2^*_{\alpha}}, \quad \forall z \in X^{\alpha}(\mathbb{R}^{N+1}_{+}).$$

The constant is achieved when $z(\cdot,0) = u(\cdot)$ takes the form:

$$u(x) = u_{\varepsilon}(x) = \frac{\varepsilon^{(N-\alpha)/2}}{(|x|^2 + \varepsilon^2)^{(N-\alpha)/2}}$$

When $\Omega = \mathbb{R}^N$, $r = 2^*_{\alpha}$, there exists a constant $S(\alpha, N) > 0$ such that

$$\int_{\mathbb{R}^{N+1}_{+}} y^{1-\alpha} |\nabla z(x,y)|^2 \, dx \, dy \ge S(\alpha,N) \left(\int_{\mathbb{R}^N} |z(x,0)|^{2^*_{\alpha}} \, dx \right)^{2/2^*_{\alpha}}, \quad \forall z \in X^{\alpha}(\mathbb{R}^{N+1}_{+}).$$

The constant is achieved when $z(\cdot, 0) = u(\cdot)$ takes the form:

$$u(x) = u_{\varepsilon}(x) = \frac{\varepsilon^{(N-\alpha)/2}}{(|x|^2 + \varepsilon^2)^{(N-\alpha)/2}}.$$

Also we have the corresponding Sobolev inequality

$$\int_{\mathbb{R}^N} |(-\Delta)^{\alpha/4} v|^2 \, dx \ge \kappa_\alpha S(\alpha, N) \left(\int_{\mathbb{R}^N} |v|^{2^*_\alpha} \, dx \right)^{2/2^*_\alpha}$$

for any $v \in H_0^{\alpha/2}(\mathbb{R}^N)$.

When $\Omega = \mathbb{R}^N$, $r = 2^*_{\alpha}$, there exists a constant $S(\alpha, N) > 0$ such that

$$\int_{\mathbb{R}^{N+1}_+} y^{1-\alpha} |\nabla z(x,y)|^2 \, dx \, dy \ge S(\alpha,N) \left(\int_{\mathbb{R}^N} |z(x,0)|^{2^*_\alpha} \, dx \right)^{2/2^*_\alpha}, \quad \forall z \in X^\alpha(\mathbb{R}^{N+1}_+).$$

The constant is achieved when $z(\cdot, 0) = u(\cdot)$ takes the form:

$$u(x) = u_{\varepsilon}(x) = \frac{\varepsilon^{(N-\alpha)/2}}{(|x|^2 + \varepsilon^2)^{(N-\alpha)/2}}.$$

Also we have the corresponding Sobolev inequality

$$\int_{\mathbb{R}^N} |(-\Delta)^{\alpha/4} v|^2 \, dx \ge \kappa_\alpha S(\alpha, N) \left(\int_{\mathbb{R}^N} |v|^{2^*_\alpha} \, dx \right)^{2/2^*_\alpha}$$

for any $v \in H_0^{\alpha/2}(\mathbb{R}^N)$.

Note that these constants are achived on \mathbb{R}^N , but are not attained in any bounded domain.
Remember the problem

$$(P_{\lambda}) \quad \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^q + u^{2^* - 1}, \quad u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

Remember the problem

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{2^{*}-1}, & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. There exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$;
- 2. has at least two solutions for each $0 < \lambda < \Lambda$; ($1 \le \alpha < 2$)
- 3. has a solution for $\lambda = \Lambda$.

Remember the problem

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{2^{*}-1}, & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. There exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$;
- 2. has at least two solutions for each $0 < \lambda < \Lambda$; ($1 \le \alpha < 2$)
- 3. has a solution for $\lambda = \Lambda$.

In the subcritical case **[BCdPS]** the same restriction on α appeared. The difficulty was to find a Liouville-type theorem for $0 < \alpha < 1$. Here, due to the lack of regularity, it is not clear how to separate the solutions in the appropriate way, see **[CP,D]** for more details.

[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc. Edinburgh.
[CP] E. C., I. Peral J. Funct. Anal. 2003.
[D] J. Dávila, J. Funct. Anal. 2001.

Remember the problem

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{2^{*}-1}, & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. There exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$;
- 2. has at least two solutions for each $0 < \lambda < \Lambda$; $(1 \le \alpha < 2)$
- 3. has a solution for $\lambda = \Lambda$.

Theorem 2 Let q = 1, $0 < \alpha < 2$ and $N \ge 2\alpha$. Then the problem (P_{λ})

- 1. has no solution for $\lambda \geq \lambda_1$;
- 2. has a solution for each $0 < \lambda < \lambda_1$.

Remember the problem

$$(P_{\lambda}) \quad \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{2^{*}-1}, \quad u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. There exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$;
- 2. has at least two solutions for each $0 < \lambda < \Lambda$; $(1 \le \alpha < 2)$
- 3. has a solution for $\lambda = \Lambda$.

Theorem 2 Let q = 1, $0 < \alpha < 2$ and $N \ge 2\alpha$. Then the problem (P_{λ})

- 1. has no solution for $\lambda \geq \lambda_1$;
- 2. has a solution for each $0 < \lambda < \lambda_1$.

We have left open the range $\alpha < N < 2\alpha$. See the special case $\alpha = 2$ and N = 3 in **[BN]**. If $\alpha = 1$ this range is empty, see **[T]**.

[BN] H. Brezis, L. Nirenberg, Comm. Pure Appl. Math. 1983.[T] J. Tan, Calc. Var. Partial Differential Equations 2011.

Remember the problem

$$(P_{\lambda}) \begin{cases} (-\Delta)^{\alpha/2}u = \lambda u^{q} + u^{2^{*}-1}, & u > 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. There exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$;
- 2. has at least two solutions for each $0 < \lambda < \Lambda$; $(1 \le \alpha < 2)$
- 3. has a solution for $\lambda = \Lambda$.

Theorem 2 Let $q = 1, 0 < \alpha < 2$ and $N \ge 2\alpha$. Then the problem (P_{λ})

- 1. has no solution for $\lambda \geq \lambda_1$;
- 2. has a solution for each $0 < \lambda < \lambda_1$.

Theorem 3 Let $1 < q < 2^*_{\alpha} - 1$, $0 < \alpha < 2$ and $N > \alpha(1 + (1/q))$. Then the problem (P_{λ}) has a solution for any $\lambda > 0$.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$egin{array}{ll} (-\Delta)^{lpha/2}u = f(x,u) & ext{ in }\Omega, \ u > 0 & ext{ in }\Omega, \ u = 0 & ext{ on }\partial\Omega \end{array}$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$\left\{ \begin{array}{ll} (-\Delta)^{\alpha/2}u = f(x,u) & \mbox{ in }\Omega, \\ u > 0 & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega \end{array} \right.$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

The proof follows by the Moser iterative method ([GT]) with appropriate test functions.

[GT] D. Gilbarg, N.S. Trudinger, "Elliptic partial differential equations of second order" Springer-Verlag, Berlin 2001.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$\begin{array}{ll} & (-\Delta)^{\alpha/2}u = f(x,u) & \quad \mbox{in }\Omega, \\ & u > 0 & \quad \mbox{in }\Omega, \\ & u = 0 & \quad \mbox{on }\partial\Omega \end{array} \end{array}$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 2 Let *u* be a solution of (P_{λ}) .

- (i) If $\alpha = 1$ and $q \ge 1$ then $u \in \mathcal{C}^{\infty}(\overline{\Omega})$.
- (ii) If $\alpha = 1$ and q < 1 then $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.
- (iii) If $\alpha < 1$ then $u \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$.
- (iv) If $\alpha > 1$ then $u \in \mathcal{C}^{1,\alpha-1}(\overline{\Omega})$.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$\begin{array}{ll} (-\Delta)^{\alpha/2}u = f(x,u) & \mbox{ in }\Omega, \\ u > 0 & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega \end{array} \end{array}$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 2 Let *u* be a solution of (P_{λ}) .

- (i) If $\alpha = 1$ and $q \ge 1$ then $u \in \mathcal{C}^{\infty}(\overline{\Omega})$.
- (ii) If $\alpha = 1$ and q < 1 then $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.
- (iii) If $\alpha < 1$ then $u \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$.
- (iv) If $\alpha > 1$ then $u \in \mathcal{C}^{1,\alpha-1}(\overline{\Omega})$.

Proof: (i) By Proposition 1 and **[CT]** we get that $u \in C^{0,\gamma}(\overline{\Omega})$, for some $\gamma < 1$. Since $q \ge 1$ then $f_{\lambda}(u) \in C^{0,\gamma}(\overline{\Omega})$. Again by **[CT]**, it follows that $u \in C^{1,\gamma}(\overline{\Omega})$. Iterating the process we conclude that $u \in C^{\infty}(\overline{\Omega})$.

[CT] X. Cabré, J. Tan, Adv. Math. 2010.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$\begin{array}{ll} (-\Delta)^{\alpha/2}u = f(x,u) & \mbox{ in }\Omega, \\ u > 0 & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega \end{array} \end{array}$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 2 Let *u* be a solution of (P_{λ}) .

- (i) If $\alpha = 1$ and $q \ge 1$ then $u \in \mathcal{C}^{\infty}(\overline{\Omega})$.
- (ii) If $\alpha = 1$ and q < 1 then $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.
- (iii) If $\alpha < 1$ then $u \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$.
- (iv) If $\alpha > 1$ then $u \in \mathcal{C}^{1,\alpha-1}(\overline{\Omega})$.

Proof: (ii) As before we have $u \in \mathcal{C}^{0,\gamma}(\overline{\Omega})$, for some $\gamma < 1$. Therefore $f_{\lambda}(u) \in \mathcal{C}^{0,q\gamma}(\overline{\Omega})$. It follows that $u \in \mathcal{C}^{1,q\gamma}(\overline{\Omega})$, which gives $f_{\lambda}(u) \in \mathcal{C}^{0,q}(\overline{\Omega})$. Finally this implies $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

$$\begin{array}{ll} (-\Delta)^{\alpha/2}u = f(x,u) & \mbox{ in }\Omega, \\ u > 0 & \mbox{ in }\Omega, \\ u = 0 & \mbox{ on }\partial\Omega \end{array} \end{array}$$

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 2 Let *u* be a solution of (P_{λ}) .

- (i) If $\alpha = 1$ and $q \ge 1$ then $u \in \mathcal{C}^{\infty}(\overline{\Omega})$.
- (ii) If $\alpha = 1$ and q < 1 then $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.
- (iii) If $\alpha < 1$ then $u \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$.
- (iv) If $\alpha > 1$ then $u \in \mathcal{C}^{1,\alpha-1}(\overline{\Omega})$.

Proof: (iii) By **[CDDS]** we obtain that $u \in C^{0,\gamma}(\overline{\Omega})$ for all $\gamma \in (0,\alpha)$. This implies that $f_{\lambda}(u) \in C^{0,r}(\overline{\Omega})$ for every $r < \min\{q\alpha, \alpha\}$. Therefore, again by another result in **[CDDS]**, we get that $u \in C^{0,\alpha}(\overline{\Omega})$.

[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential Equations, arXiv:1004.1906.

Proposition 1 Let $u \in H_0^{\alpha/2}(\Omega)$ be a solution to the problem

with $0 \leq f(x,s) \leq C(1+|s|^p) \quad \forall (x,s) \in \Omega \times \mathbb{R}$, and some $0 . Then <math>u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C(\|u\|_{H^{\alpha/2}_{0}(\Omega)})$.

Proposition 2 Let *u* be a solution of (P_{λ}) .

- (i) If $\alpha = 1$ and $q \ge 1$ then $u \in \mathcal{C}^{\infty}(\overline{\Omega})$.
- (ii) If $\alpha = 1$ and q < 1 then $u \in \mathcal{C}^{1,q}(\overline{\Omega})$.
- (iii) If $\alpha < 1$ then $u \in \mathcal{C}^{0,\alpha}(\overline{\Omega})$.
- (iv) If $\alpha > 1$ then $u \in \mathcal{C}^{1,\alpha-1}(\overline{\Omega})$.

Proof: (iv) Since $\alpha > 1$, we can write problem (P_{λ}) as follows

$$\begin{cases} (-\Delta)^{1/2}u = s & \text{in } \Omega, \\ (-\Delta)^{(\alpha-1)/2}s = f_{\lambda}(u) & \text{in } \Omega, \\ u = s = 0 & \text{on } \partial\Omega. \end{cases}$$

Reasoning as before, we obtain the desired regularity in two steps, using [CT] and [CDDS].

Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L].

[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.

Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L].

[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.

Proposition 3 Let $\{w_n\}_{n\in\mathbb{N}}$ be a weakly convergent sequence to w in $X_0^{\alpha}(\mathcal{C}_{\Omega})$, such that the sequence $\{y^{1-\alpha}|\nabla w_n|^2\}_{n\in\mathbb{N}}$ is tight. Let $u_n = Tr(w_n)$ and u = Tr(w). Assume that μ, ν are two non negative measures such that

$$y^{1-\alpha} |\nabla w_n|^2 \to \mu$$
 and $|u_n|^{2^*_{\alpha}} \to \nu$, as $n \to \infty$ (0.2)

in the sense of measures. Then there exist an at most countable set I, points $\{x_k\}_{k\in I} \subset \Omega$ and real positive numbers μ_k , ν_k such that

1.
$$\mu \ge y^{1-\alpha} |\nabla w|^2 + \sum_{k \in I} \mu_k \delta_{x_k}$$
,
2. $\nu = |u|^{2^*_{\alpha}} + \sum_{k \in I} \nu_k \delta_{x_k}$,
3. $\mu_k \ge S(\alpha, N) \nu_k^{\frac{2}{2^*_{\alpha}}}$.

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. Then, there exists $0 < \Lambda < \infty$ such that Problem (P_{λ})

- 1. has no positive solution for $\lambda > \Lambda$;
- 2. has at least two positive solutions for each $0 < \lambda < \Lambda$;
- 3. has a positive solution for $\lambda = \Lambda$.

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. Then, there exists $0 < \Lambda < \infty$ such that Problem (P_{λ})

- 1. has no positive solution for $\lambda > \Lambda$;
- 2. has at least two positive solutions for each $0 < \lambda < \Lambda$;
- 3. has a positive solution for $\lambda = \Lambda$.

Proof of Theorem 1 1. Denoting (λ_1, φ_1) the first eigenvalue and an associated positive eigenfunction to the classical Laplace operator, we have that

$$\int_{\Omega} \left(\lambda u^{q} + u^{\frac{N+\alpha}{N-\alpha}} \right) \varphi_{1} \, dx = \lambda_{1}^{\alpha/2} \int_{\Omega} u \varphi_{1} \, dx.$$

Observe that there exist positive constants c, δ such that $\lambda t^q + t^{\frac{N+\alpha}{N-\alpha}} > c\lambda^{\delta}t$, for any t > 0, hence by the previous integral identity, $c\lambda^{\delta} < \lambda_1^{\alpha/2} \Rightarrow \Lambda < \infty$.

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. Then, there exists $0 < \Lambda < \infty$ such that Problem (P_{λ})

- 1. has no positive solution for $\lambda > \Lambda$;
- 2. has at least two positive solutions for each $0 < \lambda < \Lambda$;
- 3. has a positive solution for $\lambda = \Lambda$.

Proof of Theorem 1 To prove $\Lambda > 0$, for $\lambda > 0$ sufficiently small, one can use the iteration method of sub-supersolutions, starting with the subsolution and obtaining a minimal one.

See for example, the pioneering works **[GP,ABC]** for the *p*-Laplacian, Laplacian resp. among others...

Moreover, it is easy to see that we have an interval of minimal solutions increasing with respect to λ for any $0 < \lambda < \Lambda$.

[GP] J. García-Azorero, I. Peral Trans. Amer. Math. Soc. 1991.

[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Func. Analysis 1994.

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. Then, there exists $0 < \Lambda < \infty$ such that Problem (P_{λ})

- 1. has no positive solution for $\lambda > \Lambda$;
- 2. has at least two positive solutions for each $0 < \lambda < \Lambda$;
- 3. has a positive solution for $\lambda = \Lambda$.

Proof of Theorem 1 3. The idea consist (like in **[ABC]**) on passing to the limit as $\lambda \nearrow \Lambda$ on the sequence of minimal solutions $w_n = w_{\lambda_n}$. Clearly $J_{\lambda_n}(w_n) < 0$, hence

$$0 > J_{\lambda_n}(w_n) - \frac{1}{2_{\alpha}^*} \langle J_{\lambda_n}'(w_n), w_n \rangle = \kappa_{\alpha} \left(\frac{1}{2} - \frac{1}{2_{\alpha}^*} \right) \|w_n\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 - \lambda_n \left(\frac{1}{q+1} - \frac{1}{2_{\alpha}^*} \right) \int_{\Omega} w_n^{q+1} dx.$$

By the Sobolev and Trace inequalities, the sequence is bounded, $||w_n||_{X_0^{\alpha}} \leq C$. Then there exist a subsequence $w_n \rightharpoonup w_{\Lambda} \in X_0^{\alpha}(\mathcal{C}_{\Omega})$. Moreover, by comparison $w_{\Lambda} \geq w_{\lambda} > 0$ for any $0 < \lambda < \Lambda$. A non trivial solution to (P_{Λ}) .

Theorem 1 Let 0 < q < 1, $1 \le \alpha < 2$. Then, there exists $0 < \Lambda < \infty$ such that Problem (P_{λ})

- 1. has no positive solution for $\lambda > \Lambda$;
- 2. has at least two positive solutions for each $0 < \lambda < \Lambda$;
- 3. has a positive solution for $\lambda = \Lambda$.

Proof of Theorem 1 2. Ideas/Steps:

(i) The minimal solution is a local minimum for the functional.

(ii) So we can use the Mountain Pass Theorem, obtaining a minimax sequence.

(iii) In order to find a second solution, we need to prove a Palais-Smale (PS) condition under a critical level.

(iv) Arguing by contradiction, if the local minimum would be the unique critical point, then the functional satisfies a local (PS)_c condition for c under a critical level. To do that we construct a path by localizing the minimizers of the Trace/Sobolev inequalities at the possible Dirac Deltas given by the concentration-compactness result.

Here appear new difficulties:

1.- It is not known how the fractional Laplacian acts on products of functions.

2.- By that, we work on the extended functional, but the minimizers have not an explicit expression on \mathbb{R}^{N+1}_+ .

3.- Also we need to prove that there is neither vanishing, nor dichotomy, since we pass to the infinite cylinder in the y-variable.

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the C^1 -topology. To start with we prove a separation lemma in that topology.

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the C^1 -topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let $0 < \mu_1 < \lambda_0 < \mu_2 < \Lambda$. Let z_{μ_1} , z_{λ_0} and z_{μ_2} be the corresponding minimal solutions to (P_{λ}) , $\lambda = \mu_1$, λ_0 and μ_2 respectively. If $\mathcal{X} = \{z \in \mathcal{C}_0^1(\Omega) | z_{\mu_1} \le z \le z_{\mu_2}\}$, then there exists $\varepsilon > 0$ such that

$$\{z_{\lambda_0}\} + \varepsilon B_1 \subset \mathcal{X},$$

where B_1 is the unit ball in $\mathcal{C}_0^1(\Omega)$.

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the C^1 -topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let $0 < \mu_1 < \lambda_0 < \mu_2 < \Lambda$. Let z_{μ_1} , z_{λ_0} and z_{μ_2} be the corresponding minimal solutions to (P_{λ}) , $\lambda = \mu_1$, λ_0 and μ_2 respectively. If $\mathcal{X} = \{z \in \mathcal{C}_0^1(\Omega) | z_{\mu_1} \le z \le z_{\mu_2}\}$, then there exists $\varepsilon > 0$ such that

$$\{z_{\lambda_0}\} + \varepsilon B_1 \subset \mathcal{X},$$

where B_1 is the unit ball in $\mathcal{C}_0^1(\Omega)$.

Proof. Since $\alpha \ge 1$, by Proposition 2, $\exists 0 < \gamma < 1$ such that any solution to (P_{λ}) is in $C^{1,\gamma}$ for any $0 < \lambda < \Lambda$. Then

$$u(x) \leq C \operatorname{dist}(x, \partial \Omega), \quad \forall x \in \Omega.$$

By comparison with a positive first eigenfunction of the Laplacian, we get

$$u(x) \ge c \operatorname{dist} (x, \partial \Omega), \quad \forall x \in \Omega. \quad \Box$$

Lemma 2 For all $\lambda \in (0, \Lambda)$ there exists a solution for (P_{λ}) which is a local minimum of the functional *I* in the C^1 -topology.

Lemma 2 For all $\lambda \in (0, \Lambda)$ there exists a solution for (P_{λ}) which is a local minimum of the functional *I* in the C^1 -topology.

Proof. Given $0 < \mu_1 < \lambda < \mu_2 < \Lambda$, let z_{μ_1} and z_{μ_2} be the minimal solutions of (P_{μ_1}) and (P_{μ_2}) respectively, we set

$$f^*(x,s) = \begin{cases} f_{\lambda}(z_{\mu_1}(x)) & \text{if } s \leq z_{\mu_1}, \\ \\ f_{\lambda}(s) & \text{if } z_{\mu_1} \leq s \leq z_{\mu_2}, \\ \\ f_{\lambda}(z_{\mu_2}(x)) & \text{if } z_{\mu_2} \leq s, \end{cases}$$

$$F^*(x,z) = \int_0^z f^*(x,s) \, ds$$

and

$$I^{*}(z) = \frac{1}{2} \|z\|_{H^{\alpha/2}_{0}(\Omega)} - \int_{\Omega} F^{*}(x, u) dx.$$

This functional achieves its global minimum.

By comparison with our functional in \mathcal{X} and Lemma 1 we get a minimum in $\mathcal{C}_0^1(\Omega)$.

We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let $z_0 \in H_0^{\alpha/2}(\Omega)$ be a local minimum of I in $\mathcal{C}_0^1(\Omega)$, i.e., there exists r > 0 such that

$$I(z_0) \le I(z_0 + z) \qquad \forall z \in \mathcal{C}_0^1(\Omega) \text{ with } \|z\|_{\mathcal{C}_0^1(\Omega)} \le r.$$

$$(0.3)$$

Then z_0 is a local minimum of I in $H_0^{\alpha/2}(\Omega)$, that is, there exists $\varepsilon_0 > 0$ such that

$$I(z_0) \leq I(z_0+z) \qquad \forall z \in H_0^{\alpha/2}(\Omega) \text{ with } \|z\|_{H_0^{\alpha/2}(\Omega)} \leq \varepsilon_0.$$

We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let $z_0 \in H_0^{\alpha/2}(\Omega)$ be a local minimum of I in $\mathcal{C}_0^1(\Omega)$, i.e., there exists r > 0 such that

$$I(z_0) \le I(z_0 + z) \qquad \forall z \in \mathcal{C}_0^1(\Omega) \text{ with } \|z\|_{\mathcal{C}_0^1(\Omega)} \le r.$$

$$(0.4)$$

Then z_0 is a local minimum of I in $H_0^{\alpha/2}(\Omega)$, that is, there exists $\varepsilon_0 > 0$ such that

$$I(z_0) \leq I(z_0+z) \qquad \forall z \in H_0^{\alpha/2}(\Omega) \text{ with } \|z\|_{H_0^{\alpha/2}(\Omega)} \leq \varepsilon_0.$$

[BN2] H. Brezis, L. Nirenberg H^1 versus C^1 local minimizers CRAS 1993.

We check that the theorem in [BN2] is easy to prove in our setting.

Proposition 3 Let $z_0 \in H_0^{\alpha/2}(\Omega)$ be a local minimum of I in $\mathcal{C}_0^1(\Omega)$, i.e., there exists r > 0 such that

$$I(z_0) \le I(z_0 + z) \qquad \forall z \in \mathcal{C}_0^1(\Omega) \text{ with } \|z\|_{\mathcal{C}_0^1(\Omega)} \le r.$$

$$(0.5)$$

Then z_0 is a local minimum of I in $H_0^{\alpha/2}(\Omega)$, that is, there exists $\varepsilon_0 > 0$ such that

$$I(z_0) \leq I(z_0+z) \qquad \forall z \in H_0^{\alpha/2}(\Omega) \text{ with } \|z\|_{H_0^{\alpha/2}(\Omega)} \leq \varepsilon_0.$$

We make a translation in the nonlinearity of the functional in order to get that minimum at the origin.

Lemma 3 (*i*) The translated functional has a local minimum at the origin in $H_0^{\alpha/2}(\Omega)$. Moreover, (*ii*) the extended functional has a local minimum at the origin in $X_0^{\alpha}(C_{\Omega})$.

We check that the theorem in **[BN2]** is easy to prove in our setting.

Proposition 3 Let $z_0 \in H_0^{\alpha/2}(\Omega)$ be a local minimum of I in $\mathcal{C}_0^1(\Omega)$, i.e., there exists r > 0 such that

$$I(z_0) \le I(z_0 + z) \qquad \forall z \in \mathcal{C}_0^1(\Omega) \text{ with } \|z\|_{\mathcal{C}_0^1(\Omega)} \le r.$$

$$(0.6)$$

Then z_0 is a local minimum of I in $H_0^{\alpha/2}(\Omega)$, that is, there exists $\varepsilon_0 > 0$ such that

$$I(z_0) \leq I(z_0+z) \qquad \forall z \in H_0^{\alpha/2}(\Omega) \text{ with } \|z\|_{H_0^{\alpha/2}(\Omega)} \leq \varepsilon_0.$$

We make a translation in the nonlinearity of the functional in order to get that minimum at the origin.

Lemma 3 (*i*) The translated functional has a local minimum at the origin in $H_0^{\alpha/2}(\Omega)$. Moreover, (*ii*) the extended functional has a local minimum at the origin in $X_0^{\alpha}(C_{\Omega})$.

The part (*i*) follows by simple computations as in the classical case, **[ABC]**. The second part (*ii*) follows by using the isometry between $H_0^{\alpha/2}(\Omega)$ and $X_0^{\alpha}(\mathcal{C}_{\Omega})$, and the fact that the α -harmonic extension minimize the norm in $X_0^{\alpha}(\mathcal{C}_{\Omega})$.

[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Funct. Analysis 1994.

Lemma 4 If v = 0 is the only critical point of \tilde{J} in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ then \tilde{J} satisfies a local (PS)_c condition for any $c < c^*$.

Lemma 4 If v = 0 is the only critical point of \tilde{J} in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ then \tilde{J} satisfies a local (PS)_c condition for any $c < c^*$.

In order to prove it, first we show that the $(PS)_c$ sequence of the previous lemma is tight.

Lemma 5 For any $\eta > 0$ there exists $\rho_0 > 0$ such that

$$\int_{\{y>\rho_0\}} \int_{\Omega} y^{1-\alpha} |\nabla z_n|^2 dx dy < \eta, \quad \forall n \in \mathbb{N}.$$

Lemma 4 If v = 0 is the only critical point of \tilde{J} in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ then \tilde{J} satisfies a local (PS)_c condition for any $c < c^*$.

Proof of Lemma 4. Let $\{w_n\}$ be a $(PS)_c: \widetilde{J}(w_n) \to c < c^*, \quad \widetilde{J}'(w_n) \to 0$. By Lemma 5 and Proposition 3 (concentration-compactness), there exists an index set I (at most countable) and a sequence of points $\{x_k\} \subset \Omega$, $k \in I$ and real positive numbers μ_k , ν_k such that (up to a subsequence)

$$y^{1-\alpha} |\nabla w_n|^2 \to \mu \ge y^{1-\alpha} |\nabla w_0|^2 + \sum_{k \in I} \mu_k \delta_{x_k}$$

and

$$|w_n(\cdot,0)|^{2^*_{\alpha}} \to \nu = |w_0(\cdot,0)|^{2^*_{\alpha}} + \sum_{k \in I} \nu_k \delta_{x_k}$$

in the sense of measures, and moreover, $\mu_k \ge S(\alpha, N)\nu_k^{\frac{2}{2\alpha}}$, for every $k \in I$.

Lemma 4 If v = 0 is the only critical point of \tilde{J} in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ then \tilde{J} satisfies a local (PS)_c condition for any $c < c^*$.

Proof of Lemma 4. Let ϕ be a regular non-increasing cut-off function, $\phi = 1$ in B_1 , $\phi = 0$ in B_2^c . Then $\phi_{\varepsilon}(x, y) = \phi(x/\varepsilon, y/\varepsilon)$, it is clear that $|\nabla \phi_{\varepsilon}| \leq \frac{C}{\varepsilon}$. We denote $\Gamma_{2\varepsilon} = B_{2\varepsilon}^+(x_{k_0}) \cap \{y = 0\}$. Clearly,

$$\kappa_{\alpha} \lim_{n \to \infty} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha} \langle \nabla w_n, \nabla \phi_{\varepsilon} \rangle w_n dx dy$$

$$= \lim_{n \to \infty} \left(\int_{\Gamma_{2\varepsilon}} |w_n|^{2^*_{\alpha}} \phi_{\varepsilon} \, dx + \lambda \int_{\Gamma_{2\varepsilon}} |w_n|^{q+1} \phi_{\varepsilon} \, dx - \kappa_{\alpha} \int_{B^+_{2\varepsilon}(x_{k_0})} y^{1-\alpha} |\nabla w_n|^2 \phi_{\varepsilon} \, dx dy \right).$$

Passing to the limit we obtain

$$\lim_{\varepsilon \to 0} \left[\int_{\Gamma_{2\varepsilon}} \phi_{\varepsilon} \, d\nu + \lambda \int_{\Gamma_{2\varepsilon}} |w_0|^{q+1} \phi_{\varepsilon} \, dx - \kappa_{\alpha} \int_{B_{2\varepsilon}^+(x_{k_0})} \phi_{\varepsilon} \, d\mu \right] = \nu_{k_0} - \kappa_{\alpha} \mu_{k_0}.$$

Since $\mu_k \geq S(\alpha,N)\nu_k^{\frac{2}{2_\alpha^*}}$, we get that

 $\nu_k = 0 \quad \text{or} \quad \nu_k \ge (\kappa_\alpha S(\alpha, N))^{\frac{N}{\alpha}}, \quad \forall k \in I.$

Lemma 4 If v = 0 is the only critical point of \tilde{J} in $X_0^{\alpha}(\mathcal{C}_{\Omega})$ then \tilde{J} satisfies a local (PS)_c condition for any $c < c^*$.

Proof of Lemma 4. Suppose that $\nu_{k_0} \neq 0$ for some $k_0 \in I$. Then

$$c = \lim_{n \to \infty} J(w_n) - \frac{1}{2} \langle J'(w_n), w_n \rangle$$

$$\geq \frac{\alpha}{2N} \int_{\Omega} w_0^{2^*_{\alpha}} dx + \frac{\alpha}{2N} \nu_{k_0} + \lambda \left(\frac{1}{2} - \frac{1}{q+1}\right) \int_{\Omega} w_0^{q+1} dx$$

$$\geq \frac{\alpha}{2N} (\kappa_{\alpha} S(\alpha, N))^{N/\alpha} = c^*,$$

a contradiction. Therefore $\nu_k = 0 \ \forall k \in I$, so $u_n \to u_0$ strongly in $L^{2^*_{\alpha}}(\Omega)$ and we conclude easily.

Now the idea is the following. One consider the minimizers to the Sobolev inequality $u_{\varepsilon}(x) = \frac{\varepsilon^{(N-\alpha)/2}}{(|x|^2 + \varepsilon^2)^{(N-\alpha)/2}}$ and its α -harmonic extension w_{ε} , not explicit. Consider an appropriate cut-off function ϕ in \mathcal{C}_{Ω} centered at the origin (we can assume $0 \in \Omega$), and denote $\psi_{\varepsilon} = \frac{\phi w_{\varepsilon}}{\|\phi w_{\varepsilon}\|}$. Define

$$\Gamma_{\varepsilon} = \{ \gamma \in \mathcal{C}([0,1], X_0^{\alpha}(\mathcal{C}_{\Omega})) : \gamma(0) = 0, \, \gamma(1) = t_{\varepsilon} \psi_{\varepsilon} \}$$

for some $t_{\varepsilon} > 0$ such that $\widetilde{J}(t_{\varepsilon}\psi_{\varepsilon}) < 0$. And consider the minimax value

$$c_{\varepsilon} = \inf_{\gamma \in \Gamma_{\varepsilon}} \max \widetilde{J}(\gamma(t)) : \ 0 \le t \le 1.$$

Then we are going to prove that for $\varepsilon \ll 1$,

$$c_{\varepsilon} \leq \sup_{t \geq 0} \widetilde{J}(t\psi_{\varepsilon}) < c^* = \frac{\alpha}{2N} \left(\kappa_{\alpha} S(\alpha, N)\right)^{N/\alpha}.$$

By the Mountain Pass Theorem, there exists a (PS) sequence $\{w_n\} \subset X_0^{\alpha}(\mathcal{C}_{\Omega})$ verifying $\widetilde{J}(w_n) \to c_{\varepsilon} < c^*, \quad \widetilde{J}'(w_n) \to 0.$ So by Lemma 4 we finish.

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$\|\phi w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 = \|w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 + O(\varepsilon^{N-\alpha}),$$

$$\|\phi u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \begin{cases} c\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) & \text{if } N > 2\alpha, \\ c\varepsilon^{\alpha}\log(1/\varepsilon) + O(\varepsilon^{\alpha}) & \text{if } N = 2\alpha, \end{cases}$$

and if $r = \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$,

$$\|\phi u_{\varepsilon}\|_{L^{r}(\Omega)}^{r} \ge c\varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha < N < 2\alpha.$$
Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$\|\phi w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 = \|w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 + O(\varepsilon^{N-\alpha}),$$

$$\|\phi u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \begin{cases} c\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) & \text{if } N > 2\alpha, \\ c\varepsilon^{\alpha}\log(1/\varepsilon) + O(\varepsilon^{\alpha}) & \text{if } N = 2\alpha, \end{cases}$$

and if $r = \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$,

$$\|\phi u_{\varepsilon}\|_{L^{r}(\Omega)}^{r} \ge c\varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha < N < 2\alpha.$$

Taking into account that the family u_{ε} and the Poisson kernel are self-similar $u_{\varepsilon}(x) = \varepsilon^{\frac{\alpha-N}{2}} u_1(x/\varepsilon), P_y^{\alpha}(x) = \frac{1}{y^N} P_1^{\alpha}\left(\frac{x}{y}\right)$, this gives that the family w_{ε} is also self-similar, more precisely

$$w_{\varepsilon}(x,y) = \varepsilon^{\frac{\alpha-N}{2}} w_1\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon}\right).$$

We will denote $w_{1,\alpha} = w_1$.

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$\|\phi w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 = \|w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 + O(\varepsilon^{N-\alpha}),$$

$$\|\phi u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \begin{cases} c\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) & \text{if } N > 2\alpha, \\ c\varepsilon^{\alpha}\log(1/\varepsilon) + O(\varepsilon^{\alpha}) & \text{if } N = 2\alpha, \end{cases}$$

and if $r = \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$,

$$\|\phi u_{\varepsilon}\|_{L^{r}(\Omega)}^{r} \ge c\varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha < N < 2\alpha.$$

Lemma 7 $w_{\varepsilon}(x,y) = \varepsilon^{\frac{\alpha-N}{2}} w_1\left(\frac{x}{\varepsilon},\frac{y}{\varepsilon}\right); w_{1,\alpha} = w_1.$

$$|\nabla w_{1,\alpha}(x,y)| \le \frac{c}{y} w_{1,\alpha}(x,y), \quad \alpha > 0, \ (x,y) \in \mathbb{R}^{N+1}_+$$

$$|\nabla w_{1,\alpha}(x,y)| \le cw_{1,\alpha-1}(x,y), \quad \alpha > 1, \ (x,y) \in \mathbb{R}^{N+1}_+.$$
$$|w_{1,\alpha}(x,y)| \le C\varepsilon^{N-\alpha}, \quad \frac{1}{2\varepsilon} \le |(x,y)| \le \frac{1}{\varepsilon}.$$

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$\|\phi w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 = \|w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 + O(\varepsilon^{N-\alpha}),$$

$$\|\phi u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \begin{cases} c\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) & \text{if } N > 2\alpha, \\ c\varepsilon^{\alpha}\log(1/\varepsilon) + O(\varepsilon^{\alpha}) & \text{if } N = 2\alpha, \end{cases}$$

and if $r = \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$,

$$\|\phi u_{\varepsilon}\|_{L^{r}(\Omega)}^{r} \ge c\varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha < N < 2\alpha.$$

Lemma 8 For $\varepsilon \ll 1$,

$$\sup_{t>0} \widetilde{J}(t\psi_{\varepsilon}) < c^*.$$

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$\|\phi w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 = \|w_{\varepsilon}\|_{X_0^{\alpha}(\mathcal{C}_{\Omega})}^2 + O(\varepsilon^{N-\alpha}),$$

$$\|\phi u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \begin{cases} c\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) & \text{if } N > 2\alpha, \\ c\varepsilon^{\alpha}\log(1/\varepsilon) + O(\varepsilon^{\alpha}) & \text{if } N = 2\alpha, \end{cases}$$

and if $r = \frac{N+\alpha}{N-\alpha} = 2^*_{\alpha} - 1$,

$$\|\phi u_{\varepsilon}\|_{L^{r}(\Omega)}^{r} \ge c\varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha < N < 2\alpha.$$

Lemma 8 For $\varepsilon \ll 1$,

$$\sup_{t>0} \widetilde{J}(t\psi_{\varepsilon}) < c^*.$$

For example for $N > 2\alpha$, after some computations,

$$\sup_{t>0} \widetilde{J}(t\psi_{\varepsilon}) \le c^* - c\,\varepsilon^{\alpha} + O(\varepsilon^{N-\alpha}) < c^*. \quad \blacksquare$$