A non-local critical problem involving the fractional Laplacian operator

Eduardo Colorado
Universidad Carlos III de Madrid

UGR, Granada Febrero 2012

The main results of the talk are in collaboration with:

- B. Barrios, UAM-ICMAT.
- A. de Pablo, UC3M.
- U. Sánchez, UC3M.
B. Barrios, E. C., A. de Pablo, U. Sánchez, On Some critical problems for the fractional Laplacian operator. Preprint 2011, arXiv:1106.6081.

The main problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=f_{\lambda}(u), & u>0 \\ u=0 & \text { in } \Omega, \\ \text { on } \partial \Omega,\end{cases}
$$

The main problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=f_{\lambda}(u), & u>0 \\ u=0 & \text { in } \Omega, \\ \text { on } \partial \Omega,\end{cases}
$$

where $f_{\lambda}(u)=\lambda u^{q}+u^{r}, \lambda>0,0<q<r \leq \frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$ and $\Omega \subset \mathbb{R}^{N}$, with $N>\alpha, 0<\alpha<2$.

The main problem

$\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=f_{\lambda}(u), \quad u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}$
where $f_{\lambda}(u)=\lambda u^{q}+u^{r}, \lambda>0,0<q<r \leq \frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$ and $\Omega \subset \mathbb{R}^{N}$, with $N>\alpha, 0<\alpha<2$.

Subcritical case $1<r<\frac{N+\alpha}{N-\alpha}$, and $q<1$
[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. To appear in Proc. Roy. Soc. Edinburgh.
Critical case $r=\frac{N+\alpha}{N-\alpha}$
[BCPS] B. Barrios, E.C., A. de Pablo, U. Sánchez, On Some critical problems for the fractional Laplacian operator. Preprint 2011, arXiv:1106.6081.

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition)

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities
- Main results

Scheme of the talk

- Definition of the Fractional Laplacian (through the spectral decomposition)
- Extended problem to one more variable
- Trace and Sobolev Inequalities
- Main results
- Some ideas of the proofs

Definition of the Fractional Laplacian

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $\left(\lambda_{n}^{\alpha / 2}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha / 2}$, also with zero Dirichlet boundary conditions.

Definition of the Fractional Laplacian

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $\left(\lambda_{n}^{\alpha / 2}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha / 2}$, also with zero Dirichlet boundary conditions.

The fractional Laplacian $(-\Delta)^{\alpha / 2}$ is well defined in the space

$$
H_{0}^{\alpha / 2}(\Omega)=\left\{u=\sum a_{n} \varphi_{n} \in L^{2}(\Omega):\|u\|_{H_{0}^{\alpha / 2}(\Omega)}^{2}=\sum a_{n}^{2} \lambda_{n}^{\alpha / 2}<\infty\right\} .
$$

Definition of the Fractional Laplacian

Powers of Laplacian operator $(-\Delta)$:
Let $\left(\lambda_{n}, \varphi_{n}\right)$ be the eigenvalues and eigenfunctions of $(-\Delta)$ in Ω with zero Dirichlet boundary data. Then $\left(\lambda_{n}^{\alpha / 2}, \varphi_{n}\right)$ are the eigenvalues and eigenfunctions of $(-\Delta)^{\alpha / 2}$, also with zero Dirichlet boundary conditions.

The fractional Laplacian $(-\Delta)^{\alpha / 2}$ is well defined in the space

$$
H_{0}^{\alpha / 2}(\Omega)=\left\{u=\sum a_{n} \varphi_{n} \in L^{2}(\Omega):\|u\|_{H_{0}^{\alpha / 2}(\Omega)}^{2}=\sum a_{n}^{2} \lambda_{n}^{\alpha / 2}<\infty\right\} .
$$

As a consequence,

$$
(-\Delta)^{\alpha / 2} u=\sum \lambda_{n}^{\alpha / 2} a_{n} \varphi_{n} .
$$

Note that then $\|u\|_{H_{0}^{\alpha / 2}(\Omega)}=\left\|(-\Delta)^{\alpha / 4} u\right\|_{L^{2}(\Omega)}$.

Definition of the Fractional Laplacian

We now consider the general problem

$$
(P) \begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Definition of the Fractional Laplacian

We now consider the general problem

$$
(P) \begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

We say that $u \in H_{0}^{\alpha / 2}(\Omega)$ is an energy solution of (P) if the identity

$$
\int_{\Omega}(-\Delta)^{\alpha / 4} u(-\Delta)^{\alpha / 4} \varphi d x=\int_{\Omega} f(x, u) \varphi d x
$$

holds for $\forall \varphi \in H_{0}^{\alpha / 2}(\Omega)$.

Definition of the Fractional Laplacian

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0,0<q<\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$ and $\Omega \subset \mathbb{R}^{N}$, with $N>\alpha, 0<\alpha<2$.

Definition of the Fractional Laplacian

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0,0<q<\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$ and $\Omega \subset \mathbb{R}^{N}$, with $N>\alpha, 0<\alpha<2$.
By the definition of solution, if $f_{\lambda}(u)=\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}$

$$
\int_{\Omega}(-\Delta)^{\alpha / 4} u(-\Delta)^{\alpha / 4} \varphi d x=\int_{\Omega} f_{\lambda}(u) \varphi d x, \quad \forall \varphi \in H_{0}^{\alpha / 2}(\Omega)
$$

Definition of the Fractional Laplacian

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}, & u>0 \\ u=0 & \text { in } \Omega, \\ \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0,0<q<\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$ and $\Omega \subset \mathbb{R}^{N}$, with $N>\alpha, 0<\alpha<2$.
By the definition of solution, if $f_{\lambda}(u)=\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}$

$$
\int_{\Omega}(-\Delta)^{\alpha / 4} u(-\Delta)^{\alpha / 4} \varphi d x=\int_{\Omega} f_{\lambda}(u) \varphi d x, \quad \forall \varphi \in H_{0}^{\alpha / 2}(\Omega)
$$

Since $u \in H_{0}^{\alpha / 2}(\Omega) \Rightarrow f(u) \in L^{\frac{2 N}{N+\alpha}}(\Omega) \hookrightarrow H^{-\alpha / 2}(\Omega)$.
Then $f_{\lambda}(u) \varphi \in L^{1}(\Omega)$.
Associated energy functional

$$
I(u)=\frac{1}{2} \int_{\Omega}\left|(-\Delta)^{\alpha / 4} u\right|^{2} d x-\frac{\lambda}{q+1} \int_{\Omega} u^{q+1} d x-\frac{1}{2_{\alpha}^{*}} \int_{\Omega} u^{2_{\alpha}^{*}} d x
$$

which is well defined in $H_{0}^{\alpha / 2}(\Omega)$. Clearly, the critical points of I correspond to solutions to $\left(P_{\lambda}\right)$.

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{0}^{\alpha / 2}(\Omega)$, we define its α-harmonic extension $w=\mathrm{E}_{\alpha}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-\alpha} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times(0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{0}^{\alpha / 2}(\Omega)$, we define its α-harmonic extension $w=\mathrm{E}_{\alpha}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-\alpha} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times(0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

The extension function belongs to the space $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ defined as the completion of $\left\{z \in \mathcal{C}^{\infty}\left(\mathcal{C}_{\Omega}\right): z=0\right.$ on $\left.\partial_{L} \mathcal{C}_{\Omega}\right\}$ with the norm

$$
\|z\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}=\left(\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}|\nabla z|^{2} d x d y\right)^{1 / 2}
$$

where κ_{α} is a normalization constant.

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{0}^{\alpha / 2}(\Omega)$, we define its α-harmonic extension $w=\mathrm{E}_{\alpha}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-\alpha} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times(0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

With that κ_{α}, the extension operator is an isometry

$$
\left\|\mathrm{E}_{\alpha}(\psi)\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}=\|\psi\|_{H_{0}^{\alpha / 2}(\Omega)}, \quad \forall \psi \in H_{0}^{\alpha / 2}(\Omega)
$$

Extended problems to one more variable

Consider the cylinder $\mathcal{C}_{\Omega}=\Omega \times(0, \infty) \subset \mathbb{R}_{+}^{N+1}$. Given $u \in H_{0}^{\alpha / 2}(\Omega)$, we define its α-harmonic extension $w=\mathrm{E}_{\alpha}(u)$ to the cylinder \mathcal{C}_{Ω} as the solution to the problem

$$
\begin{cases}-\operatorname{div}\left(y^{1-\alpha} \nabla w\right)=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega}=\partial \Omega \times(0, \infty) \\ w=u & \text { on } \Omega \times\{y=0\}\end{cases}
$$

With that κ_{α}, the extension operator is an isometry

$$
\left\|\mathrm{E}_{\alpha}(\psi)\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}=\|\psi\|_{H_{0}^{\alpha / 2}(\Omega)}, \quad \forall \psi \in H_{0}^{\alpha / 2}(\Omega)
$$

Moreover, for any $\varphi \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$, we have the following trace inequality

$$
\|\varphi\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)} \geq\|\varphi(\cdot, 0)\|_{H_{0}^{\alpha / 2}(\Omega)} .
$$

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$
-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}(x, y)=(-\Delta)^{\alpha / 2} u(x)
$$

Extended problems to one more variable

The relevance of the extension function w is that it is related to the fractional Laplacian of the original function u through the formula

$$
-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}(x, y)=(-\Delta)^{\alpha / 2} u(x)
$$

See:
[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.
See also:
[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc. Edinburgh.
[CT] X. Cabré, J. Tan, Adv. Math., 2010.
[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential Equations.

Extended problems to one more variable

When $\Omega=\mathbb{R}^{N}$, the above Dirichlet to Neumann procedure provides a formula to the fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

$$
\left.\left((-\Delta)^{\alpha / 2}\right) g\right)^{\wedge}(\xi)=|\xi|^{\alpha} \hat{g}(\xi) .
$$

See
[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.

Extended problems to one more variable

When $\Omega=\mathbb{R}^{N}$, the above Dirichlet to Neumann procedure provides a formula to the fractional Laplacian in the whole space equivalent to the one by Fourier Transform,

$$
\left.\left((-\Delta)^{\alpha / 2}\right) g\right)^{\wedge}(\xi)=|\xi|^{\alpha} \hat{g}(\xi) .
$$

See
[CS] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian.
Comm. Partial Differential Equations, 2007.

In that case there are explicit expressions to the α-harmonic extension and the fractional Laplacian in terms of the Poisson and Riesz kernels, resp.

$$
\begin{aligned}
& w(x, y)=P_{y}^{\alpha} * u(x)=c_{N, \alpha} y^{\alpha} \int_{\mathbb{R}^{N}} \frac{u(s)}{\left(|x-s|^{2}+y^{2}\right)^{\frac{N+\alpha}{2}}} d s, \\
& (-\Delta)^{\alpha / 2} u(x)=d_{N, \alpha} P . V . \int_{\mathbb{R}^{N}} \frac{u(x)-u(s)}{|x-s|^{N+\alpha}} d s .
\end{aligned}
$$

$\alpha c_{N, \alpha} \kappa_{\alpha}=d_{N, \alpha}$

Extended problems to one more variable

Denoting

$$
L_{\alpha} w:=-\operatorname{div}\left(y^{1-\alpha} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{\alpha}}:=-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(\bar{P}_{\lambda}\right) \begin{cases}L_{\alpha} w=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{\alpha}}=\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

Extended problems to one more variable

Denoting

$$
L_{\alpha} w:=-\operatorname{div}\left(y^{1-\alpha} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{\alpha}}:=-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(\bar{P}_{\lambda}\right) \begin{cases}L_{\alpha} w=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{\alpha}}=\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

$w \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}}\right) \varphi d x, \quad \forall \varphi \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)
$$

Extended problems to one more variable

Denoting

$$
L_{\alpha} w:=-\operatorname{div}\left(y^{1-\alpha} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{\alpha}}:=-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(\bar{P}_{\lambda}\right) \begin{cases}L_{\alpha} w=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{\alpha}}=\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

$w \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}}\right) \varphi d x, \quad \forall \varphi \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)
$$

Energy functional:

$$
J(w)=\frac{\kappa_{\alpha}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}|\nabla w|^{2} d x d y-\frac{\lambda}{q+1} \int_{\Omega} w^{q+1} d x-\frac{1}{2_{\alpha}^{*}} \int_{\Omega} w^{2_{\alpha}^{*}} d x
$$

Extended problems to one more variable

Denoting

$$
L_{\alpha} w:=-\operatorname{div}\left(y^{1-\alpha} \nabla w\right), \quad \frac{\partial w}{\partial \nu^{\alpha}}:=-\kappa_{\alpha} \lim _{y \rightarrow 0^{+}} y^{1-\alpha} \frac{\partial w}{\partial y}
$$

we can reformulate $\left(P_{\lambda}\right)$ with the new variable as

$$
\left(\bar{P}_{\lambda}\right) \begin{cases}L_{\alpha} w=0 & \text { in } \mathcal{C}_{\Omega} \\ w=0 & \text { on } \partial_{L} \mathcal{C}_{\Omega} \\ \frac{\partial w}{\partial \nu^{\alpha}}=\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}} & \text { in } \Omega \times\{y=0\}\end{cases}
$$

$w \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ is an energy solution if

$$
\kappa_{\alpha} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}\langle\nabla w, \nabla \varphi\rangle d x d y=\int_{\Omega}\left(\lambda w^{q}+w^{\frac{N+\alpha}{N-\alpha}}\right) \varphi d x, \quad \forall \varphi \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)
$$

Energy functional:

$$
J(w)=\frac{\kappa_{\alpha}}{2} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}|\nabla w|^{2} d x d y-\frac{\lambda}{q+1} \int_{\Omega} w^{q+1} d x-\frac{1}{2_{\alpha}^{*}} \int_{\Omega} w^{2_{\alpha}^{*}} d x
$$

Note that critical points of J in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ correspond to critical points of I in $H_{0}^{\alpha / 2}(\Omega)$. Even more, minima of J also correspond to minima of I.

Sobolev and Trace inequalities

Assume $N>\alpha$, there exists a positive constant $C=C(\alpha, r, N, \Omega)$ such that for $1 \leq r \leq 2_{\alpha}^{*}=\frac{2 N}{N-\alpha}$,

$$
\int_{\mathcal{C}_{\Omega}} y^{1-\alpha}|\nabla z(x, y)|^{2} d x d y \geq C\left(\int_{\Omega}|z(x, 0)|^{r} d x\right)^{2 / r}
$$

for any $z \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$.

Sobolev and Trace inequalities

Assume $N>\alpha$, there exists a positive constant $C=C(\alpha, r, N, \Omega)$ such that for $1 \leq r \leq 2_{\alpha}^{*}=\frac{2 N}{N-\alpha}$,

$$
\int_{\mathcal{C}_{\Omega}} y^{1-\alpha}|\nabla z(x, y)|^{2} d x d y \geq C\left(\int_{\Omega}|z(x, 0)|^{r} d x\right)^{2 / r}
$$

for any $z \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$.

Also,

$$
\int_{\Omega}\left|(-\Delta)^{\alpha / 4} v\right|^{2} d x \geq C\left(\int_{\Omega}|v|^{r} d x\right)^{2 / r}
$$

for any $v \in H_{0}^{\alpha / 2}(\Omega)$.

Sobolev and Trace inequalities

When $\Omega=\mathbb{R}^{N}, r=2_{\alpha}^{*}$, there exists a constant $S(\alpha, N)>0$ such that

$$
\int_{\mathbb{R}_{+}^{N+1}} y^{1-\alpha}|\nabla z(x, y)|^{2} d x d y \geq S(\alpha, N)\left(\int_{\mathbb{R}^{N}}|z(x, 0)|^{2_{\alpha}^{*}} d x\right)^{2 / 2_{\alpha}^{*}}, \quad \forall z \in X^{\alpha}\left(\mathbb{R}_{+}^{N+1}\right)
$$

The constant is achieved when $z(\cdot, 0)=u(\cdot)$ takes the form:

$$
u(x)=u_{\varepsilon}(x)=\frac{\varepsilon^{(N-\alpha) / 2}}{\left(|x|^{2}+\varepsilon^{2}\right)^{(N-\alpha) / 2}}
$$

Sobolev and Trace inequalities

When $\Omega=\mathbb{R}^{N}, r=2_{\alpha}^{*}$, there exists a constant $S(\alpha, N)>0$ such that

$$
\int_{\mathbb{R}_{+}^{N+1}} y^{1-\alpha}|\nabla z(x, y)|^{2} d x d y \geq S(\alpha, N)\left(\int_{\mathbb{R}^{N}}|z(x, 0)|^{2_{\alpha}^{*}} d x\right)^{2 / 2_{\alpha}^{*}}, \quad \forall z \in X^{\alpha}\left(\mathbb{R}_{+}^{N+1}\right)
$$

The constant is achieved when $z(\cdot, 0)=u(\cdot)$ takes the form:

$$
u(x)=u_{\varepsilon}(x)=\frac{\varepsilon^{(N-\alpha) / 2}}{\left(|x|^{2}+\varepsilon^{2}\right)^{(N-\alpha) / 2}}
$$

Also we have the corresponding Sobolev inequality

$$
\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\alpha / 4} v\right|^{2} d x \geq \kappa_{\alpha} S(\alpha, N)\left(\int_{\mathbb{R}^{N}}|v|^{2_{\alpha}^{*}} d x\right)^{2 / 2_{\alpha}^{*}}
$$

for any $v \in H_{0}^{\alpha / 2}\left(\mathbb{R}^{N}\right)$.

Sobolev and Trace inequalities

When $\Omega=\mathbb{R}^{N}, r=2_{\alpha}^{*}$, there exists a constant $S(\alpha, N)>0$ such that

$$
\int_{\mathbb{R}_{+}^{N+1}} y^{1-\alpha}|\nabla z(x, y)|^{2} d x d y \geq S(\alpha, N)\left(\int_{\mathbb{R}^{N}}|z(x, 0)|^{2_{\alpha}^{*}} d x\right)^{2 / 2_{\alpha}^{*}}, \quad \forall z \in X^{\alpha}\left(\mathbb{R}_{+}^{N+1}\right)
$$

The constant is achieved when $z(\cdot, 0)=u(\cdot)$ takes the form:

$$
u(x)=u_{\varepsilon}(x)=\frac{\varepsilon^{(N-\alpha) / 2}}{\left(|x|^{2}+\varepsilon^{2}\right)^{(N-\alpha) / 2}} .
$$

Also we have the corresponding Sobolev inequality

$$
\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\alpha / 4} v\right|^{2} d x \geq \kappa_{\alpha} S(\alpha, N)\left(\int_{\mathbb{R}^{N}}|v|^{2_{\alpha}^{*}} d x\right)^{2 / 2_{\alpha}^{*}}
$$

for any $v \in H_{0}^{\alpha / 2}\left(\mathbb{R}^{N}\right)$.

- Note that these constants are achived on \mathbb{R}^{N}, but are not attained in any bounded domain.

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, & u>0 \\ u=0 & \text { in } \Omega \\ \text { on } \partial \Omega\end{cases}
$$

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. There exists $0<\Lambda<\infty$ such that the problem (P_{λ})

1. has no solution for $\lambda>\Lambda$;
2. has at least two solutions for each $0<\lambda<\Lambda$; $(1 \leq \alpha<2)$
3. has a solution for $\lambda=\Lambda$.

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. There exists $0<\Lambda<\infty$ such that the problem (P_{λ})

1. has no solution for $\lambda>\Lambda$;
2. has at least two solutions for each $0<\lambda<\Lambda$; $(1 \leq \alpha<2)$
3. has a solution for $\lambda=\Lambda$.

In the subcritical case [BCdPS] the same restriction on α appeared. The difficulty was to find a Liouville-type theorem for $0<\alpha<1$. Here, due to the lack of regularity, it is not clear how to separate the solutions in the appropriate way, see [CP,D] for more details.
[BCdPS] C. Brändle, E.C., A. de Pablo, U. Sánchez, To appear in Proc. Roy. Soc.
Edinburgh.
[CP] E. C., I. Peral J. Funct. Anal. 2003.
[D] J. Dávila, J. Funct. Anal. 2001.

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, \quad u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. There exists $0<\Lambda<\infty$ such that the problem (P_{λ})

1. has no solution for $\lambda>\Lambda$;
2. has at least two solutions for each $0<\lambda<\Lambda$; $(1 \leq \alpha<2)$
3. has a solution for $\lambda=\Lambda$.

Theorem 2 Let $q=1,0<\alpha<2$ and $N \geq 2 \alpha$. Then the problem $\left(P_{\lambda}\right)$

1. has no solution for $\lambda \geq \lambda_{1}$;
2. has a solution for each $0<\lambda<\lambda_{1}$.

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. There exists $0<\Lambda<\infty$ such that the problem (P_{λ})

1. has no solution for $\lambda>\Lambda$;
2. has at least two solutions for each $0<\lambda<\Lambda$; $(1 \leq \alpha<2)$
3. has a solution for $\lambda=\Lambda$.

Theorem 2 Let $q=1,0<\alpha<2$ and $N \geq 2 \alpha$. Then the problem $\left(P_{\lambda}\right)$

1. has no solution for $\lambda \geq \lambda_{1}$;
2. has a solution for each $0<\lambda<\lambda_{1}$.

We have left open the range $\alpha<N<2 \alpha$. See the special case $\alpha=2$ and $N=3$ in [BN]. If $\alpha=1$ this range is empty, see [T].
[BN] H. Brezis, L. Nirenberg, Comm. Pure Appl. Math. 1983.
[T] J. Tan, Calc. Var. Partial Differential Equations 2011.

Main Results

Remember the problem

$$
\left(P_{\lambda}\right) \begin{cases}(-\Delta)^{\alpha / 2} u=\lambda u^{q}+u^{2^{*}-1}, \quad u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. There exists $0<\Lambda<\infty$ such that the problem (P_{λ})

1. has no solution for $\lambda>\Lambda$;
2. has at least two solutions for each $0<\lambda<\Lambda$; $(1 \leq \alpha<2)$
3. has a solution for $\lambda=\Lambda$.

Theorem 2 Let $q=1,0<\alpha<2$ and $N \geq 2 \alpha$. Then the problem $\left(P_{\lambda}\right)$

1. has no solution for $\lambda \geq \lambda_{1}$;
2. has a solution for each $0<\lambda<\lambda_{1}$.

Theorem 3 Let $1<q<2_{\alpha}^{*}-1,0<\alpha<2$ and $N>\alpha(1+(1 / q))$. Then the problem (P_{λ}) has a solution for any $\lambda>0$.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.

The proof follows by the Moser iterative method ([GT]) with appropriate test functions.
[GT] D. Gilbarg, N.S. Trudinger, "Elliptic partial differential equations of second order" Springer-Verlag, Berlin 2001.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.
Proposition 2 Let u be a solution of $\left(P_{\lambda}\right)$.
(i) If $\alpha=1$ and $q \geq 1$ then $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
(ii) If $\alpha=1$ and $q<1$ then $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.
(iii) If $\alpha<1$ then $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
(iv) If $\alpha>1$ then $u \in \mathcal{C}^{1, \alpha-1}(\bar{\Omega})$.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.
Proposition 2 Let u be a solution of $\left(P_{\lambda}\right)$.
(i) If $\alpha=1$ and $q \geq 1$ then $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
(ii) If $\alpha=1$ and $q<1$ then $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.
(iii) If $\alpha<1$ then $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
(iv) If $\alpha>1$ then $u \in \mathcal{C}^{1, \alpha-1}(\bar{\Omega})$.

Proof: (i) By Proposition 1 and [CT] we get that $u \in \mathcal{C}^{0, \gamma}(\bar{\Omega})$, for some $\gamma<1$. Since $q \geq 1$ then $f_{\lambda}(u) \in \mathcal{C}^{0, \gamma}(\bar{\Omega})$. Again by [CT], it follows that $u \in \mathcal{C}^{1, \gamma}(\bar{\Omega})$. Iterating the process we conclude that $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
[CT] X. Cabré, J. Tan, Adv. Math. 2010.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.
Proposition 2 Let u be a solution of $\left(P_{\lambda}\right)$.
(i) If $\alpha=1$ and $q \geq 1$ then $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
(ii) If $\alpha=1$ and $q<1$ then $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.
(iii) If $\alpha<1$ then $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
(iv) If $\alpha>1$ then $u \in \mathcal{C}^{1, \alpha-1}(\bar{\Omega})$.

Proof: (ii) As before we have $u \in \mathcal{C}^{0, \gamma}(\bar{\Omega})$, for some $\gamma<1$. Therefore $f_{\lambda}(u) \in \mathcal{C}^{0, q \gamma}(\bar{\Omega})$. It follows that $u \in \mathcal{C}^{1, q \gamma}(\bar{\Omega})$, which gives $f_{\lambda}(u) \in \mathcal{C}^{0, q}(\bar{\Omega})$. Finally this implies $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.
Proposition 2 Let u be a solution of $\left(P_{\lambda}\right)$.
(i) If $\alpha=1$ and $q \geq 1$ then $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
(ii) If $\alpha=1$ and $q<1$ then $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.
(iii) If $\alpha<1$ then $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
(iv) If $\alpha>1$ then $u \in \mathcal{C}^{1, \alpha-1}(\bar{\Omega})$.

Proof: (iii) By [CDDS] we obtain that $u \in \mathcal{C}^{0, \gamma}(\bar{\Omega})$ for all $\gamma \in(0, \alpha)$. This implies that $f_{\lambda}(u) \in \mathcal{C}^{0, r}(\bar{\Omega})$ for every $r<\min \{q \alpha, \alpha\}$. Therefore, again by another result in [CDDS], we get that $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
[CDDS] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, To appear in Comm. Partial Differential Equations, arXiv:1004.1906.

Auxiliary results (regularity)

Proposition 1 Let $u \in H_{0}^{\alpha / 2}(\Omega)$ be a solution to the problem

$$
\begin{cases}(-\Delta)^{\alpha / 2} u=f(x, u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $0 \leq f(x, s) \leq C\left(1+|s|^{p}\right) \quad \forall(x, s) \in \Omega \times \mathbb{R}$, and some $0<p \leq 2_{\alpha}^{*}-1$. Then $u \in L^{\infty}(\Omega)$ with $\|u\|_{L^{\infty}(\Omega)} \leq C\left(\|u\|_{H_{0}^{\alpha / 2}(\Omega)}\right)$.
Proposition 2 Let u be a solution of $\left(P_{\lambda}\right)$.
(i) If $\alpha=1$ and $q \geq 1$ then $u \in \mathcal{C}^{\infty}(\bar{\Omega})$.
(ii) If $\alpha=1$ and $q<1$ then $u \in \mathcal{C}^{1, q}(\bar{\Omega})$.
(iii) If $\alpha<1$ then $u \in \mathcal{C}^{0, \alpha}(\bar{\Omega})$.
(iv) If $\alpha>1$ then $u \in \mathcal{C}^{1, \alpha-1}(\bar{\Omega})$.

Proof: (iv) Since $\alpha>1$, we can write problem $\left(P_{\lambda}\right)$ as follows

$$
\begin{cases}(-\Delta)^{1 / 2} u=s & \text { in } \Omega \\ (-\Delta)^{(\alpha-1) / 2} s=f_{\lambda}(u) & \text { in } \Omega \\ u=s=0 & \text { on } \partial \Omega\end{cases}
$$

Reasoning as before, we obtain the desired regularity in two steps, using [CT] and [CDDS].

Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L].
[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.

Auxiliary results (concentration-compactness)

Following the classical result by P. L. Lions in [L].
[L] P. L. Lions Rev. Mat. Iberoamericana Part II, 1985.
Proposition 3 Let $\left\{w_{n}\right\}_{n \in \mathbb{N}}$ be a weakly convergent sequence to w in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$, such that the sequence $\left\{y^{1-\alpha}\left|\nabla w_{n}\right|^{2}\right\}_{n \in \mathbb{N}}$ is tight. Let $u_{n}=\operatorname{Tr}\left(w_{n}\right)$ and $u=\operatorname{Tr}(w)$. Assume that μ, ν are two non negative measures such that

$$
\begin{equation*}
y^{1-\alpha}\left|\nabla w_{n}\right|^{2} \rightarrow \mu \quad \text { and } \quad\left|u_{n}\right|^{2_{\alpha}^{*}} \rightarrow \nu, \quad \text { as } n \rightarrow \infty \tag{0.2}
\end{equation*}
$$

in the sense of measures. Then there exist an at most countable set I, points $\left\{x_{k}\right\}_{k \in I} \subset \Omega$ and real positive numbers μ_{k}, ν_{k} such that

1. $\mu \geq y^{1-\alpha}|\nabla w|^{2}+\sum_{k \in I} \mu_{k} \delta_{x_{k}}$,
2. $\nu=|u|^{2_{\alpha}^{*}}+\sum_{k \in I} \nu_{k} \delta_{x_{k}}$,
3. $\mu_{k} \geq S(\alpha, N) \nu_{k}^{\frac{2}{2_{\alpha}^{*}}}$.

Main ideas/steps of the proofs

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. Then, there exists $0<\Lambda<\infty$ such that Problem (P_{λ})

1. has no positive solution for $\lambda>\Lambda$;
2. has at least two positive solutions for each $0<\lambda<\Lambda$;
3. has a positive solution for $\lambda=\Lambda$.

Main ideas/steps of the proofs

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. Then, there exists $0<\Lambda<\infty$ such that Problem (P_{λ})

1. has no positive solution for $\lambda>\Lambda$;
2. has at least two positive solutions for each $0<\lambda<\Lambda$;
3. has a positive solution for $\lambda=\Lambda$.

Proof of Theorem 11 . Denoting (λ_{1}, φ_{1}) the first eigenvalue and an associated positive eigenfunction to the classical Laplace operator, we have that

$$
\int_{\Omega}\left(\lambda u^{q}+u^{\frac{N+\alpha}{N-\alpha}}\right) \varphi_{1} d x=\lambda_{1}^{\alpha / 2} \int_{\Omega} u \varphi_{1} d x
$$

Observe that there exist positive constants c, δ such that $\lambda t^{q}+t^{\frac{N+\alpha}{N-\alpha}}>c \lambda^{\delta} t$, for any $t>0$, hence by the previous integral identity, $c \lambda^{\delta}<\lambda_{1}^{\alpha / 2} \Rightarrow \Lambda<\infty$.

Main ideas/steps of the proofs

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. Then, there exists $0<\Lambda<\infty$ such that Problem (P_{λ})

1. has no positive solution for $\lambda>\Lambda$;
2. has at least two positive solutions for each $0<\lambda<\Lambda$;
3. has a positive solution for $\lambda=\Lambda$.

Proof of Theorem 1 To prove $\Lambda>0$, for $\lambda>0$ sufficiently small, one can use the iteration method of sub-supersolutions, starting with the subsolution and obtaining a minimal one.

See for example, the pioneering works [GP,ABC] for the p-Laplacian, Laplacian resp. among others...

Moreover, it is easy to see that we have an interval of minimal solutions increasing with respect to λ for any $0<\lambda<\Lambda$.
[GP] J. García-Azorero, I. Peral Trans. Amer. Math. Soc. 1991.
[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Func. Analysis 1994.

Main ideas/steps of the proofs

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. Then, there exists $0<\Lambda<\infty$ such that Problem (P_{λ})

1. has no positive solution for $\lambda>\Lambda$;
2. has at least two positive solutions for each $0<\lambda<\Lambda$;
3. has a positive solution for $\lambda=\Lambda$.

Proof of Theorem 13 . The idea consist (like in [ABC]) on passing to the limit as $\lambda \nearrow \Lambda$ on the sequence of minimal solutions $w_{n}=w_{\lambda_{n}}$. Clearly $J_{\lambda_{n}}\left(w_{n}\right)<0$, hence
$0>J_{\lambda_{n}}\left(w_{n}\right)-\frac{1}{2_{\alpha}^{*}}\left\langle J_{\lambda_{n}}^{\prime}\left(w_{n}\right), w_{n}\right\rangle=\kappa_{\alpha}\left(\frac{1}{2}-\frac{1}{2_{\alpha}^{*}}\right)\left\|w_{n}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}-\lambda_{n}\left(\frac{1}{q+1}-\frac{1}{2_{\alpha}^{*}}\right) \int_{\Omega} w_{n}^{q+1} d x$.
By the Sobolev and Trace inequalities, the sequence is bounded, $\left\|w_{n}\right\|_{X_{0}^{\alpha}} \leq C$. Then there exist a subsequence $w_{n} \rightharpoonup w_{\Lambda} \in X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$. Moreover, by comparison $w_{\Lambda} \geq w_{\lambda}>0$ for any $0<\lambda<\Lambda$. A non trivial solution to (P_{Λ}).

Main ideas/steps of the proofs

Theorem 1 Let $0<q<1,1 \leq \alpha<2$. Then, there exists $0<\Lambda<\infty$ such that Problem (P_{λ})

1. has no positive solution for $\lambda>\Lambda$;
2. has at least two positive solutions for each $0<\lambda<\Lambda$;
3. has a positive solution for $\lambda=\Lambda$.

Proof of Theorem 12 . Ideas/Steps:
(i) The minimal solution is a local minimum for the functional.
(ii) So we can use the Mountain Pass Theorem, obtaining a minimax sequence.
(iii) In order to find a second solution, we need to prove a Palais-Smale (PS) condition under a critical level.
(iv) Arguing by contradiction, if the local minimum would be the unique critical point, then the functional satisfies a local (PS) ${ }_{c}$ condition for c under a critical level. To do that we construct a path by localizing the minimizers of the Trace/Sobolev inequalities at the possible Dirac Deltas given by the concentration-compactness result.

Here appear new difficulties:

1.- It is not known how the fractional Laplacian acts on products of functions.
2.- By that, we work on the extended functional, but the minimizers have not an explicit expression on \mathbb{R}_{+}^{N+1}.
3.- Also we need to prove that there is neither vanishing, nor dichotomy, since we pass to the infinite cylinder in the y-variable.

Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the \mathcal{C}^{1}-topology. To start with we prove a separation lemma in that topology.

Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the \mathcal{C}^{1}-topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let $0<\mu_{1}<\lambda_{0}<\mu_{2}<\Lambda$. Let $z_{\mu_{1}}, z_{\lambda_{0}}$ and $z_{\mu_{2}}$ be the corresponding minimal solutions to $\left(P_{\lambda}\right), \lambda=\mu_{1}, \lambda_{0}$ and μ_{2} respectively. If $\mathcal{X}=\left\{z \in \mathcal{C}_{0}^{1}(\Omega) \mid z_{\mu_{1}} \leq z \leq z_{\mu_{2}}\right\}$, then there exists $\varepsilon>0$ such that

$$
\left\{z_{\lambda_{0}}\right\}+\varepsilon B_{1} \subset \mathcal{X},
$$

where B_{1} is the unit ball in $\mathcal{C}_{0}^{1}(\Omega)$.

Main ideas/steps of the proofs

In order to prove that the minimal solution is a local minimum, first we show that is a local minimum in the \mathcal{C}^{1}-topology. To start with we prove a separation lemma in that topology.

Lemma 1 Let $0<\mu_{1}<\lambda_{0}<\mu_{2}<\Lambda$. Let $z_{\mu_{1}}, z_{\lambda_{0}}$ and $z_{\mu_{2}}$ be the corresponding minimal solutions to $\left(P_{\lambda}\right), \lambda=\mu_{1}, \lambda_{0}$ and μ_{2} respectively. If $\mathcal{X}=\left\{z \in \mathcal{C}_{0}^{1}(\Omega) \mid z_{\mu_{1}} \leq z \leq z_{\mu_{2}}\right\}$, then there exists $\varepsilon>0$ such that

$$
\left\{z_{\lambda_{0}}\right\}+\varepsilon B_{1} \subset \mathcal{X},
$$

where B_{1} is the unit ball in $\mathcal{C}_{0}^{1}(\Omega)$.
Proof. Since $\alpha \geq 1$, by Proposition 2, $\exists 0<\gamma<1$ such that any solution to $\left(P_{\lambda}\right)$ is in $\mathcal{C}^{1, \gamma}$ for any $0<\lambda<\Lambda$. Then

$$
u(x) \leq C \text { dist }(x, \partial \Omega), \quad \forall x \in \Omega
$$

By comparison with a positive first eigenfunction of the Laplacian, we get

$$
u(x) \geq c \operatorname{dist}(x, \partial \Omega), \quad \forall x \in \Omega
$$

Main ideas/steps of the proofs

Lemma 2 For all $\lambda \in(0, \Lambda)$ there exists a solution for $\left(P_{\lambda}\right)$ which is a local minimum of the functional I in the \mathcal{C}^{1}-topology.

Main ideas/steps of the proofs

Lemma 2 For all $\lambda \in(0, \Lambda)$ there exists a solution for $\left(P_{\lambda}\right)$ which is a local minimum of the functional I in the \mathcal{C}^{1}-topology.

Proof. Given $0<\mu_{1}<\lambda<\mu_{2}<\Lambda$, let $z_{\mu_{1}}$ and $z_{\mu_{2}}$ be the minimal solutions of ($P_{\mu_{1}}$) and $\left(P_{\mu_{2}}\right)$ respectively, we set

$$
\begin{aligned}
f^{*}(x, s)= \begin{cases}f_{\lambda}\left(z_{\mu_{1}}(x)\right) & \text { if } s \leq z_{\mu_{1}} \\
f_{\lambda}(s) & \text { if } z_{\mu_{1}} \leq s \leq z_{\mu_{2}} \\
f_{\lambda}\left(z_{\mu_{2}}(x)\right) & \text { if } z_{\mu_{2}} \leq s\end{cases} \\
F^{*}(x, z)=\int_{0}^{z} f^{*}(x, s) d s
\end{aligned}
$$

and

$$
I^{*}(z)=\frac{1}{2}\|z\|_{H_{0}^{\alpha / 2}(\Omega)}-\int_{\Omega} F^{*}(x, u) d x .
$$

This functional achieves its global minimum.
By comparison with our functional in \mathcal{X} and Lemma 1 we get a minimum in $\mathcal{C}_{0}^{1}(\Omega)$.

Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.
Proposition 3 Let $z_{0} \in H_{0}^{\alpha / 2}(\Omega)$ be a local minimum of I in $\mathcal{C}_{0}^{1}(\Omega)$, i.e., there exists $r>0$ such that

$$
\begin{equation*}
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in \mathcal{C}_{0}^{1}(\Omega) \text { with }\|z\|_{\mathcal{C}_{0}^{1}(\Omega)} \leq r . \tag{0.3}
\end{equation*}
$$

Then z_{0} is a local minimum of I in $H_{0}^{\alpha / 2}(\Omega)$, that is, there exists $\varepsilon_{0}>0$ such that

$$
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in H_{0}^{\alpha / 2}(\Omega) \text { with }\|z\|_{H_{0}^{\alpha / 2}(\Omega)} \leq \varepsilon_{0} .
$$

Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.
Proposition 3 Let $z_{0} \in H_{0}^{\alpha / 2}(\Omega)$ be a local minimum of I in $\mathcal{C}_{0}^{1}(\Omega)$, i.e., there exists $r>0$ such that

$$
\begin{equation*}
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in \mathcal{C}_{0}^{1}(\Omega) \text { with }\|z\|_{\mathcal{C}_{0}^{1}(\Omega)} \leq r \tag{0.4}
\end{equation*}
$$

Then z_{0} is a local minimum of I in $H_{0}^{\alpha / 2}(\Omega)$, that is, there exists $\varepsilon_{0}>0$ such that

$$
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in H_{0}^{\alpha / 2}(\Omega) \text { with }\|z\|_{H_{0}^{\alpha / 2}(\Omega)} \leq \varepsilon_{0}
$$

[BN2] H. Brezis, L. Nirenberg H^{1} versus \mathcal{C}^{1} local minimizers CRAS 1993.

Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.
Proposition 3 Let $z_{0} \in H_{0}^{\alpha / 2}(\Omega)$ be a local minimum of I in $\mathcal{C}_{0}^{1}(\Omega)$, i.e., there exists $r>0$ such that

$$
\begin{equation*}
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in \mathcal{C}_{0}^{1}(\Omega) \text { with }\|z\|_{\mathcal{C}_{0}^{1}(\Omega)} \leq r \tag{0.5}
\end{equation*}
$$

Then z_{0} is a local minimum of I in $H_{0}^{\alpha / 2}(\Omega)$, that is, there exists $\varepsilon_{0}>0$ such that

$$
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in H_{0}^{\alpha / 2}(\Omega) \text { with }\|z\|_{H_{0}^{\alpha / 2}(\Omega)} \leq \varepsilon_{0} .
$$

We make a translation in the nonlinearity of the functional in order to get that minimum at the origin.

Lemma 3 (i) The translated functional has a local minimum at the origin in $H_{0}^{\alpha / 2}(\Omega)$.
Moreover, (ii) the extended functional has a local minimum at the origin in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$.

Main ideas/steps of the proofs

We check that the theorem in [BN2] is easy to prove in our setting.
Proposition 3 Let $z_{0} \in H_{0}^{\alpha / 2}(\Omega)$ be a local minimum of I in $\mathcal{C}_{0}^{1}(\Omega)$, i.e., there exists $r>0$ such that

$$
\begin{equation*}
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in \mathcal{C}_{0}^{1}(\Omega) \text { with }\|z\|_{\mathcal{C}_{0}^{1}(\Omega)} \leq r \tag{0.6}
\end{equation*}
$$

Then z_{0} is a local minimum of I in $H_{0}^{\alpha / 2}(\Omega)$, that is, there exists $\varepsilon_{0}>0$ such that

$$
I\left(z_{0}\right) \leq I\left(z_{0}+z\right) \quad \forall z \in H_{0}^{\alpha / 2}(\Omega) \text { with }\|z\|_{H_{0}^{\alpha / 2}(\Omega)} \leq \varepsilon_{0} .
$$

We make a translation in the nonlinearity of the functional in order to get that minimum at the origin.

Lemma 3 (i) The translated functional has a local minimum at the origin in $H_{0}^{\alpha / 2}(\Omega)$. Moreover, ($\left(i i\right.$) the extended functional has a local minimum at the origin in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$.

The part (i) follows by simple computations as in the classical case, [ABC]. The second part (ii) follows by using the isometry between $H_{0}^{\alpha / 2}(\Omega)$ and $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$, and the fact that the α-harmonic extension minimize the norm in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$.
[ABC] A. Ambrosetti, H. Brezis, G. Cerami J. Funct. Analysis 1994.

Main ideas/steps of the proofs

Lemma 4 If $v=0$ is the only critical point of \widetilde{J} in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ then \widetilde{J} satisfies a local (PS) ${ }_{c}$ condition for any $c<c^{*}$.

Main ideas/steps of the proofs

Lemma 4 If $v=0$ is the only critical point of \widetilde{J} in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ then \widetilde{J} satisfies a local (PS) ${ }_{c}$ condition for any $c<c^{*}$.

In order to prove it, first we show that the $(\mathrm{PS})_{c}$ sequence of the previous lemma is tight.
Lemma 5 For any $\eta>0$ there exists $\rho_{0}>0$ such that

$$
\int_{\left\{y>\rho_{0}\right\}} \int_{\Omega} y^{1-\alpha}\left|\nabla z_{n}\right|^{2} d x d y<\eta, \quad \forall n \in \mathbb{N} .
$$

Main ideas/steps of the proofs

Lemma 4 If $v=0$ is the only critical point of \widetilde{J} in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ then \widetilde{J} satisfies a local (PS) c_{c} condition for any $c<c^{*}$.

Proof of Lemma 4. Let $\left\{w_{n}\right\}$ be a $(P S)_{c}: \widetilde{J}\left(w_{n}\right) \rightarrow c<c^{*}, \quad \widetilde{J}^{\prime}\left(w_{n}\right) \rightarrow 0$. By Lemma 5 and Proposition 3 (concentration-compactness), there exists an index set I (at most countable) and a sequence of points $\left\{x_{k}\right\} \subset \Omega, k \in I$ and real positive numbers μ_{k}, ν_{k} such that (up to a subsequence)

$$
y^{1-\alpha}\left|\nabla w_{n}\right|^{2} \rightarrow \mu \geq y^{1-\alpha}\left|\nabla w_{0}\right|^{2}+\sum_{k \in I} \mu_{k} \delta_{x_{k}}
$$

and

$$
\left|w_{n}(\cdot, 0)\right|^{2_{\alpha}^{*}} \rightarrow \nu=\left|w_{0}(\cdot, 0)\right|^{2_{\alpha}^{*}}+\sum_{k \in I} \nu_{k} \delta_{x_{k}}
$$

in the sense of measures, and moreover, $\mu_{k} \geq S(\alpha, N) \nu_{k}^{\frac{2}{2_{\alpha}^{*}}}$, for every $k \in I$.

Main ideas/steps of the proofs

Lemma 4 If $v=0$ is the only critical point of \widetilde{J} in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ then \widetilde{J} satisfies a local (PS) c_{c} condition for any $c<c^{*}$.

Proof of Lemma 4. Let ϕ be a regular non-increasing cut-off function, $\phi=1$ in $B_{1}, \phi=0$ in B_{2}^{c}. Then $\phi_{\varepsilon}(x, y)=\phi(x / \varepsilon, y / \varepsilon)$, it is clear that $\left|\nabla \phi_{\varepsilon}\right| \leq \frac{C}{\varepsilon}$. We denote $\Gamma_{2 \varepsilon}=B_{2 \varepsilon}^{+}\left(x_{k_{0}}\right) \cap\{y=0\}$.
Clearly,

$$
\kappa_{\alpha} \lim _{n \rightarrow \infty} \int_{\mathcal{C}_{\Omega}} y^{1-\alpha}\left\langle\nabla w_{n}, \nabla \phi_{\varepsilon}\right\rangle w_{n} d x d y
$$

$=\lim _{n \rightarrow \infty}\left(\int_{\Gamma_{2 \varepsilon}}\left|w_{n}\right|^{2_{\alpha}^{*}} \phi_{\varepsilon} d x+\lambda \int_{\Gamma_{2 \varepsilon}}\left|w_{n}\right|^{q+1} \phi_{\varepsilon} d x-\kappa_{\alpha} \int_{B_{2 \varepsilon}^{+}\left(x_{k_{0}}\right)} y^{1-\alpha}\left|\nabla w_{n}\right|^{2} \phi_{\varepsilon} d x d y\right)$.
Passing to the limit we obtain

$$
\lim _{\varepsilon \rightarrow 0}\left[\int_{\Gamma_{2 \varepsilon}} \phi_{\varepsilon} d \nu+\lambda \int_{\Gamma_{2 \varepsilon}}\left|w_{0}\right|^{q+1} \phi_{\varepsilon} d x-\kappa_{\alpha} \int_{B_{2 \varepsilon}^{+}\left(x_{k_{0}}\right)} \phi_{\varepsilon} d \mu\right]=\nu_{k_{0}}-\kappa_{\alpha} \mu_{k_{0}}
$$

Since $\mu_{k} \geq S(\alpha, N) \nu_{k}^{\frac{2}{2_{\alpha}^{*}}}$, we get that

$$
\nu_{k}=0 \quad \text { or } \quad \nu_{k} \geq\left(\kappa_{\alpha} S(\alpha, N)\right)^{\frac{N}{\alpha}}, \quad \forall k \in I .
$$

Main ideas/steps of the proofs

Lemma 4 If $v=0$ is the only critical point of \widetilde{J} in $X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ then \widetilde{J} satisfies a local (PS) c_{c} condition for any $c<c^{*}$.

Proof of Lemma 4. Suppose that $\nu_{k_{0}} \neq 0$ for some $k_{0} \in I$. Then

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty} J\left(w_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(w_{n}\right), w_{n}\right\rangle \\
& \geq \frac{\alpha}{2 N} \int_{\Omega} w_{0}^{2_{\alpha}^{*}} d x+\frac{\alpha}{2 N} \nu_{k_{0}}+\lambda\left(\frac{1}{2}-\frac{1}{q+1}\right) \int_{\Omega} w_{0}^{q+1} d x \\
& \geq \frac{\alpha}{2 N}\left(\kappa_{\alpha} S(\alpha, N)\right)^{N / \alpha}=c^{*}
\end{aligned}
$$

a contradiction. Therefore $\nu_{k}=0 \forall k \in I$, so $u_{n} \rightarrow u_{0}$ strongly in $L^{2_{\alpha}^{*}}(\Omega)$ and we conclude easily.

Main ideas/steps of the proofs

Now the idea is the following. One consider the minimizers to the Sobolev inequality $u_{\varepsilon}(x)=\frac{\varepsilon^{(N-\alpha) / 2}}{\left(|x|^{2}+\varepsilon^{2}\right)^{(N-\alpha) / 2}}$ and its α-harmonic extension w_{ε}, not explicit. Consider an appropriate cut-off function ϕ in \mathcal{C}_{Ω} centered at the origin (we can assume $0 \in \Omega$), and denote $\psi_{\varepsilon}=\frac{\phi w_{\varepsilon}}{\left\|\phi w_{\varepsilon}\right\|}$. Define

$$
\Gamma_{\varepsilon}=\left\{\gamma \in \mathcal{C}\left([0,1], X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)\right): \gamma(0)=0, \gamma(1)=t_{\varepsilon} \psi_{\varepsilon}\right\}
$$

for some $t_{\varepsilon}>0$ such that $\widetilde{J}\left(t_{\varepsilon} \psi_{\varepsilon}\right)<0$. And consider the minimax value

$$
c_{\varepsilon}=\inf _{\gamma \in \Gamma_{\varepsilon}} \max \widetilde{J}(\gamma(t)): 0 \leq t \leq 1 .
$$

Then we are going to prove that for $\varepsilon \ll 1$,

$$
c_{\varepsilon} \leq \sup _{t \geq 0} \widetilde{J}\left(t \psi_{\varepsilon}\right)<c^{*}=\frac{\alpha}{2 N}\left(\kappa_{\alpha} S(\alpha, N)\right)^{N / \alpha} .
$$

By the Mountain Pass Theorem, there exists a (PS) sequence $\left\{w_{n}\right\} \subset X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)$ verifying $\widetilde{J}\left(w_{n}\right) \rightarrow c_{\varepsilon}<c^{*}, \quad \widetilde{J}^{\prime}\left(w_{n}\right) \rightarrow 0$.
So by Lemma 4 we finish.

Main ideas/steps of the proofs

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$
\begin{gathered}
\left\|\phi w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}=\left\|w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}+O\left(\varepsilon^{N-\alpha}\right), \\
\left\|\phi u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}= \begin{cases}c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right) & \text { if } N>2 \alpha, \\
c \varepsilon^{\alpha} \log (1 / \varepsilon)+O\left(\varepsilon^{\alpha}\right) & \text { if } N=2 \alpha,\end{cases}
\end{gathered}
$$

and if $r=\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$,

$$
\left\|\phi u_{\varepsilon}\right\|_{L^{r}(\Omega)}^{r} \geq c \varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha<N<2 \alpha .
$$

Main ideas/steps of the proofs

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$
\begin{gathered}
\left\|\phi w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}=\left\|w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}+O\left(\varepsilon^{N-\alpha}\right), \\
\left\|\phi u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}= \begin{cases}c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right) & \text { if } N>2 \alpha, \\
c \varepsilon^{\alpha} \log (1 / \varepsilon)+O\left(\varepsilon^{\alpha}\right) & \text { if } N=2 \alpha,\end{cases}
\end{gathered}
$$

and if $r=\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$,

$$
\left\|\phi u_{\varepsilon}\right\|_{L^{r}(\Omega)}^{r} \geq c \varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha<N<2 \alpha .
$$

Taking into account that the family u_{ε} and the Poisson kernel are self-similar $u_{\varepsilon}(x)=\varepsilon^{\frac{\alpha-N}{2}} u_{1}(x / \varepsilon), P_{y}^{\alpha}(x)=\frac{1}{y^{N}} P_{1}^{\alpha}\left(\frac{x}{y}\right)$, this gives that the family w_{ε} is also self-similar, more precisely

$$
w_{\varepsilon}(x, y)=\varepsilon^{\frac{\alpha-N}{2}} w_{1}\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right) .
$$

We will denote $w_{1, \alpha}=w_{1}$.

Main ideas/steps of the proofs

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$
\begin{gathered}
\left\|\phi w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}=\left\|w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}+O\left(\varepsilon^{N-\alpha}\right), \\
\left\|\phi u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}= \begin{cases}c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right) & \text { if } N>2 \alpha, \\
c \varepsilon^{\alpha} \log (1 / \varepsilon)+O\left(\varepsilon^{\alpha}\right) & \text { if } N=2 \alpha,\end{cases}
\end{gathered}
$$

and if $r=\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$,

$$
\left\|\phi u_{\varepsilon}\right\|_{L^{r}(\Omega)}^{r} \geq c \varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha<N<2 \alpha .
$$

Lemma $7 w_{\varepsilon}(x, y)=\varepsilon^{\frac{\alpha-N}{2}} w_{1}\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right) ; w_{1, \alpha}=w_{1}$.

$$
\begin{gathered}
\left|\nabla w_{1, \alpha}(x, y)\right| \leq \frac{c}{y} w_{1, \alpha}(x, y), \quad \alpha>0,(x, y) \in \mathbb{R}_{+}^{N+1} \\
\left|\nabla w_{1, \alpha}(x, y)\right| \leq c w_{1, \alpha-1}(x, y), \quad \alpha>1,(x, y) \in \mathbb{R}_{+}^{N+1} \\
\left|w_{1, \alpha}(x, y)\right| \leq C \varepsilon^{N-\alpha}, \quad \frac{1}{2 \varepsilon} \leq|(x, y)| \leq \frac{1}{\varepsilon}
\end{gathered}
$$

Main ideas/steps of the proofs

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$
\begin{gathered}
\left\|\phi w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}=\left\|w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}+O\left(\varepsilon^{N-\alpha}\right), \\
\left\|\phi u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}= \begin{cases}c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right) & \text { if } N>2 \alpha, \\
c \varepsilon^{\alpha} \log (1 / \varepsilon)+O\left(\varepsilon^{\alpha}\right) & \text { if } N=2 \alpha,\end{cases}
\end{gathered}
$$

and if $r=\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$,

$$
\left\|\phi u_{\varepsilon}\right\|_{L^{r}(\Omega)}^{r} \geq c \varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha<N<2 \alpha .
$$

Lemma 8 For $\varepsilon \ll 1$,

$$
\sup _{t>0} \widetilde{J}\left(t \psi_{\varepsilon}\right)<c^{*} .
$$

Main ideas/steps of the proofs

Lemma 6 With the above notation, taking $\varepsilon \ll 1$,

$$
\begin{gathered}
\left\|\phi w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}=\left\|w_{\varepsilon}\right\|_{X_{0}^{\alpha}\left(\mathcal{C}_{\Omega}\right)}^{2}+O\left(\varepsilon^{N-\alpha}\right), \\
\left\|\phi u_{\varepsilon}\right\|_{L^{2}(\Omega)}^{2}= \begin{cases}c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right) & \text { if } N>2 \alpha, \\
c \varepsilon^{\alpha} \log (1 / \varepsilon)+O\left(\varepsilon^{\alpha}\right) & \text { if } N=2 \alpha,\end{cases}
\end{gathered}
$$

and if $r=\frac{N+\alpha}{N-\alpha}=2_{\alpha}^{*}-1$,

$$
\left\|\phi u_{\varepsilon}\right\|_{L^{r}(\Omega)}^{r} \geq c \varepsilon^{\frac{N-\alpha}{2}}, \quad \alpha<N<2 \alpha .
$$

Lemma 8 For $\varepsilon \ll 1$,

$$
\sup _{t>0} \widetilde{J}\left(t \psi_{\varepsilon}\right)<c^{*} .
$$

For example for $N>2 \alpha$, after some computations,

$$
\sup _{t>0} \widetilde{J}\left(t \psi_{\varepsilon}\right) \leq c^{*}-c \varepsilon^{\alpha}+O\left(\varepsilon^{N-\alpha}\right)<c^{*}
$$

