Guía docente de Desarrollo y Conocimiento Profesional del Profesor de Matemáticas (SG1/56/1/360)
Máster
Módulos
- Módulo de Libre Disposición
- Módulo Específico
Rama
Centro en el que se imparte la docencia
Centro Responsable del título
Semestre
Créditos
Tipo
Tipo de enseñanza
Profesorado
- Ana Belén Montoro Medina
- Antonio Javier Moreno Verdejo
Tutorías
Ana Belén Montoro Medina
Email- Tutorías 1º semestre
- Lunes 10:00 a 12:00 (331)
- Martes 10:00 a 14:00 (331)
- Tutorías 2º semestre
- Lunes 10:00 a 11:30 (331)
- Martes 18:00 a 19:00 (331)
- Martes 10:30 a 14:00 (331)
Antonio Javier Moreno Verdejo
Email- Tutorías 1º semestre
- Martes 8:30 a 11:30 (363-2)
- Jueves 12:30 a 13:30 (363-2)
- Jueves 18:30 a 20:30 (363-2)
- Tutorías 2º semestre
- Martes 8:30 a 11:30 (363-2)
- Jueves 12:30 a 13:30 (363-2)
- Jueves 18:30 a 20:30 (363-2)
Breve descripción de contenidos (Según memoria de verificación del Máster)
1.De la práctica matemática a la investigación sobre formación de profesores de Matemáticas. Cuestiones generales en esta línea de investigación. Investigación sobre conocimiento y desarrollo profesional del profesor de matemáticas.
2. Conocimiento profesional del profesor. Conocimiento matemático del profesor para la enseñanza.
3. Conocimiento didáctico del contenido matemático.
4. Desarrollo profesional del profesor.
5. Profesor reflexivo. Formación de profesores basada en la reflexión.
Prerrequisitos y/o Recomendaciones
Competencias
Competencias Básicas
- CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- CB8. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
Resultados de aprendizaje (Objetivos)
- Caracterizar al profesor de matemáticas, dimensiones de estudio.
- Identificar las investigaciones que corresponden al campo "Desarrollo y conocimiento profesional del profesor de Matemáticas".
- Analizar en las investigaciones realizadas en este campo, las variables y metodologías utilizadas, así como las conclusiones obtenidas.
- Adquirir capacidad de trabajar de forma autónoma con documentos escritos, ya hagan referencia a elementos teóricos o recojan un informe de investigación.
- Adquirir habilidades mínimas requeridas para llevar a cabo la búsqueda y solución de un problema de investigación en el campo del Conocimiento y Desarrollo profesional del profesor de Matemáticas.
Programa de contenidos Teóricos y Prácticos
Teórico
1. De la práctica matemática a la investigación sobre formación de profesores de Matemáticas. Cuestiones generales en
esta línea de investigación. Investigación sobre conocimiento y desarrollo profesional del profesor de matemáticas.
2. Conocimiento profesional del profesor. Conocimiento matemático del profesor para la enseñanza.
3. Conocimiento didáctico del contenido matemático.
4. Desarrollo profesional del profesor.
5. Profesor reflexivo. Formación de profesores basada en la reflexión.
Bibliografía
Bibliografía fundamental
Cardeñoso, J.M., Flores, P. y Azcárate, P. (2001). El desarrollo profesional de los profesores de
matemáticas como campo de investigación en Educación Matemática. En Gómez, P. y Rico, L. (Eds.),
Iniciación a la investigación en Didáctica de la Matemática. Granada, D. Didáctica de la Matemática. (pp.
233-264).
Flores, P. (2007). Profesores de matemáticas reflexivos: Formación y cuestiones de investigación. PNA
Jaworski, B. (1993). The professional development of teachers: The potential of critical reflection. British
Journal of Inservice Education, 19, 37-42.
Llinares, S., & Krainer, K. (2006). Mathematics (student) teachers and teacher educators as learners. In A.
Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past,
present and future (429-460). Rotherdam: Sense.
Peñas, M., & Flores-Martínez, P. (2005). Procesos de reflexión en estudiantes para profesor de
matemáticas. Enseñanza de las Ciencias, 23(1), 5-16.
Ponte, J. (2001). Investigating in mathematics and in learning to teach mathematics. In F. L. Lin & T. J.
Cooney (Eds.), Making sense of mathematics teacher education (pp. 53-72). Dordrecht: Kluwer.
Ponte, J. P., & Chapman, O. (2006). Mathematics teachers' knowledge and practices. In A. Gutierrez & P.
Boero (Eds.), Handbook of reaserch on the psychology of mathematics education: Past, present and future
(461-494). Roterdham: Sense.
Ponte, J. P., & Chapman, O. (2008). Preservice mathematics teachers' knowledge and development. In L.
English (Ed.), Handbook : (223-261), Lawrence Erlbaum.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher,
15(2), 4-14.
Enlaces recomendados
Metodología docente
Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final.)
Evaluación Ordinaria
El artículo 18 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece
que la convocatoria ordinaria estará basada preferentemente en la evaluación continua del estudiante, excepto para
quienes se les haya reconocido el derecho a la evaluación única final.
Para la evaluación de los alumnos se consideran los siguientes elementos
E1. Participación activa en el desarrollo de la materia durante el periodo lectivo del curso, tanto presencial
como virtualmente (foros). (20%)
E2. Calidad de los trabajos realizados. (60%)
E3. Claridad y profundidad en la presentación de las ideas. (20%)
Evaluación Extraordinaria
El artículo 19 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece
que los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria dispondrán de una convocatoria
extraordinaria. A ella podrán concurrir todos los estudiantes, con independencia de haber seguido o no un proceso de
evaluación continua. De esta forma, el estudiante que no haya realizado la evaluación continua tendrá la posibilidad de
obtener el 100% de la calificación mediante la realización de una prueba y/o trabajo.
Para la evaluación de los alumnos se consideran los siguientes elementos
E2. Calidad de los trabajos realizados. (60%)
E4. Claridad y profundidad en la presentación de las ideas de los hilos presentados en los foros. (40%)
Evaluación única final
El artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece
que podrán acogerse a la evaluación única final, el estudiante que no pueda cumplir con el método de evaluación
continua por causas justificadas.
Para acogerse a la evaluación única final, el estudiante, en las dos primeras semanas de impartición de la asignatura o en
las dos semanas siguientes a su matriculación si ésta se ha producido con posterioridad al inicio de las clases o por
causa sobrevenidas. Lo solicitará, a través del procedimiento electrónico, a la Coordinación del Máster, quien dará
traslado al profesorado correspondiente, alegando y acreditando las razones que le asisten para no poder seguir el
sistema de evaluación continua.
Para la evaluación de los alumnos se consideran los siguientes elementos
E2. Calidad de los trabajos realizados. (60%)
E4. Claridad y profundidad en la presentación de las ideas de los hilos presentados en los foros. (40%)